无人机三维路径规划是一个比较复杂的全局优化问题,其目标是在考虑威胁和约束的条件下,获得最优或接近最优的飞行路径。针对鲸鱼算法在进行无人机三维航迹规划时,存在容易陷入局部最优、收敛速度较慢、收敛精度不够高等问题,提出了一种...无人机三维路径规划是一个比较复杂的全局优化问题,其目标是在考虑威胁和约束的条件下,获得最优或接近最优的飞行路径。针对鲸鱼算法在进行无人机三维航迹规划时,存在容易陷入局部最优、收敛速度较慢、收敛精度不够高等问题,提出了一种基于莱维飞行(Lévy flight)的鲸鱼优化算法(Levy Flight Based on Whale Optimization Algorithm, LWOA),用于解决无人机三维路径规划问题。该算法在迭代过程中加入了Levy飞行对最优解进行随机扰动;引入了信息交流机制,通过当前全局最优解和个体记忆最优解以及邻域最优解来更新个体的位置,能够更好地权衡局部收敛和全局开发。仿真结果表明,所提路径规划算法可以有效避开威胁区,收敛速度更快,收敛精度更高,且更不易陷入局部最优解。当迭代次数为300次、种群个数为50时,LWOA算法求得的成本函数值是PSO算法的91.1%,是GWO算法的92.1%,是WOA算法的95.9%,航迹代价更小。展开更多
研究三维空间机器人路径规划问题,由于系统求解时间较长、过早失去解的多样性、易陷入局部最优、个体适应度较差等问题,通过构建三维工作空间模型、引入变异算子和搜索无碰路径策略来解决,提出适宜于三维机器人路径规划的一种变异算子...研究三维空间机器人路径规划问题,由于系统求解时间较长、过早失去解的多样性、易陷入局部最优、个体适应度较差等问题,通过构建三维工作空间模型、引入变异算子和搜索无碰路径策略来解决,提出适宜于三维机器人路径规划的一种变异算子蚁群算法(Mutation Operator Ant Colony Algorithm,MOACA)。MOACA是一种关于模型构造的启发式搜索算法,算法在改进启发式函数设计、选择概率确定、信息素更新策略等基础上,引入逆转变异和插入变异算子,通过选择逆转点反序排列部分路径节点和随机插入路径节点的方法搜索无碰路径,对蚁群算法进行了局部优化改良。仿真结果表明,MOACA在搜索路径、收敛时间、适应度等方面较传统蚁群算法有明显改善,算法是有效可行的。展开更多
文摘无人机三维路径规划是一个比较复杂的全局优化问题,其目标是在考虑威胁和约束的条件下,获得最优或接近最优的飞行路径。针对鲸鱼算法在进行无人机三维航迹规划时,存在容易陷入局部最优、收敛速度较慢、收敛精度不够高等问题,提出了一种基于莱维飞行(Lévy flight)的鲸鱼优化算法(Levy Flight Based on Whale Optimization Algorithm, LWOA),用于解决无人机三维路径规划问题。该算法在迭代过程中加入了Levy飞行对最优解进行随机扰动;引入了信息交流机制,通过当前全局最优解和个体记忆最优解以及邻域最优解来更新个体的位置,能够更好地权衡局部收敛和全局开发。仿真结果表明,所提路径规划算法可以有效避开威胁区,收敛速度更快,收敛精度更高,且更不易陷入局部最优解。当迭代次数为300次、种群个数为50时,LWOA算法求得的成本函数值是PSO算法的91.1%,是GWO算法的92.1%,是WOA算法的95.9%,航迹代价更小。
文摘研究三维空间机器人路径规划问题,由于系统求解时间较长、过早失去解的多样性、易陷入局部最优、个体适应度较差等问题,通过构建三维工作空间模型、引入变异算子和搜索无碰路径策略来解决,提出适宜于三维机器人路径规划的一种变异算子蚁群算法(Mutation Operator Ant Colony Algorithm,MOACA)。MOACA是一种关于模型构造的启发式搜索算法,算法在改进启发式函数设计、选择概率确定、信息素更新策略等基础上,引入逆转变异和插入变异算子,通过选择逆转点反序排列部分路径节点和随机插入路径节点的方法搜索无碰路径,对蚁群算法进行了局部优化改良。仿真结果表明,MOACA在搜索路径、收敛时间、适应度等方面较传统蚁群算法有明显改善,算法是有效可行的。