期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于R3D网络的人体行为识别算法 被引量:2
1
作者 吴进 安怡媛 代巍 《电讯技术》 北大核心 2020年第8期865-870,共6页
现有的行为识别算法不能充分地提取抽象的行为特征,为此提出了基于三维残差卷积神经网络(3D Residual Convolutional Neural Network,R3D)的人体行为识别算法。该网络在三维卷积神经网络(3D Convolutional Neural Network,3D-CNN)基础... 现有的行为识别算法不能充分地提取抽象的行为特征,为此提出了基于三维残差卷积神经网络(3D Residual Convolutional Neural Network,R3D)的人体行为识别算法。该网络在三维卷积神经网络(3D Convolutional Neural Network,3D-CNN)基础上加入了残差模块,可以更好地提取时空域的特征,然后通过改变步长大小进行特征图降维,提高网络效率,并加入批量归一化层和Softplus激活函数,提高网络的收敛速度和拟合能力;之后添加Dropout层,降低过拟合风险,并且使用全局平均池化层(Global Average Pooling,GAP)代替全连接层,克服了网络参数量过大的问题;最后,使用Softmax进行分类。实验结果表明,使用R3D网络在HMDB-51数据集上获得了62.3%的识别率。 展开更多
关键词 行为识别 三维残差卷积神经网络 批量归一化层 全局平均池化层
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部