定义1 广义拓扑空间 X 称为 W 型的当且仅当它满足附加条件:[W]a∧b=0a∩b=0.易见不分明拓扑空间与拓扑空间都是 W 型的。但一致空间与接近空间却不是 W 型的。因为,如设 A=expX-{φ,X},B={φ,X},则A∧B=cxpX但 A≮B°.W 型的广义...定义1 广义拓扑空间 X 称为 W 型的当且仅当它满足附加条件:[W]a∧b=0a∩b=0.易见不分明拓扑空间与拓扑空间都是 W 型的。但一致空间与接近空间却不是 W 型的。因为,如设 A=expX-{φ,X},B={φ,X},则A∧B=cxpX但 A≮B°.W 型的广义拓扑空间的范畴记为 Wts。显然,Fts 与 Top 都是 Wts 的满子范畴,而Wts 则是 Gts 的满子范畴。展开更多
文摘定义1 广义拓扑空间 X 称为 W 型的当且仅当它满足附加条件:[W]a∧b=0a∩b=0.易见不分明拓扑空间与拓扑空间都是 W 型的。但一致空间与接近空间却不是 W 型的。因为,如设 A=expX-{φ,X},B={φ,X},则A∧B=cxpX但 A≮B°.W 型的广义拓扑空间的范畴记为 Wts。显然,Fts 与 Top 都是 Wts 的满子范畴,而Wts 则是 Gts 的满子范畴。