The aim of this study was to compare the structure of gut microbiota in Parkinson's disease(PD) patients and healthy controls;and to explore correlations between gut microbiota and PD clinical features. We analyze...The aim of this study was to compare the structure of gut microbiota in Parkinson's disease(PD) patients and healthy controls;and to explore correlations between gut microbiota and PD clinical features. We analyzed fecal bacterial composition of 24 PD patients and 14 healthy volunteers by using 16 S rRNA sequencing. There were significant differences between PD and healthy controls, as well as among different PD stages. The putative cellulose degrading bacteria from the genera Blautia(P=0.018),Faecalibacterium(P=0.048) and Ruminococcus(P=0.019) were significantly decreased in PD compared to healthy controls.The putative pathobionts from the genera Escherichia-Shigella(P=0.038), Streptococcus(P=0.01), Proteus(P=0.022), and Enterococcus(P=0.006) were significantly increased in PD subjects. Correlation analysis indicated that disease severity and PD duration negatively correlated with the putative cellulose degraders, and positively correlated with the putative pathobionts. The results suggest that structural changes of gut microbiota in PD are characterized by the decreases of putative cellulose degraders and the increases of putative pathobionts, which may potentially reduce the production of short chain fatty acids, and produce more endotoxins and neurotoxins; and these changes is potentially associated with the development of PD pathology.展开更多
Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor. Some time later postural instability occurs. Pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder an...Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor. Some time later postural instability occurs. Pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder and depression may antecede these motor symp- toms for years. It would be ideal, if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD). Thus, it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD, if there is a high amour of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein. This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.展开更多
Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literat...Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.展开更多
ProBiotic-4 is a probiotic preparation composed of Bifidobacterium lactis,Lactobacillus casei,Bifidobacterium bifidum,and Lactobacillus acidophilus.This study aims to investigate the effects of ProBiotic-4 on the micr...ProBiotic-4 is a probiotic preparation composed of Bifidobacterium lactis,Lactobacillus casei,Bifidobacterium bifidum,and Lactobacillus acidophilus.This study aims to investigate the effects of ProBiotic-4 on the microbiota-gut-brain axis and cognitive deficits,and to explore the underlying molecular mechanism using senescence-accelerated mouse prone 8(SAMP8)mice.ProBiotic-4 was orally administered to 9-month-old SAMP8 mice for 12 weeks.We observed that ProBiotic-4 significantly improved the memory deficits,cerebral neuronal and synaptic injuries,glial activation,and microbiota composition in the feces and brains of aged SAMP8 mice.ProBiotic-4 substantially attenuated aging-related disruption of the intestinal barrier and blood-brain barrier,decreased interleukin-6 and tumor necrosis factor-αat both mRNA and protein levels,reduced plasma and cerebral lipopolysaccharide(LPS)concentration,toll-like receptor 4(TLR4)expression,and nuclear factor-κB(NF-κB)nuclear translocation in the brain.In addition,not only did ProBiotic-4 significantly decreased the levels ofγ-H2 AX,8-hydroxydesoxyguanosine,and retinoic-acid-inducible gene-I(RIG-I),it also abrogated RIG-I multimerization in the brain.These findings suggest that targeting gut microbiota with probiotics may have a therapeutic potential for the deficits of the microbiota-gut-brain axis and cognitive function in aging,and that its mechanism is associated with inhibition of both TLR4-and RIG-I-mediated NF-κB signaling pathway and inflammatory responses.展开更多
基金supported by Future Life Sciences International Ltd.(NSBJ01032014,http://ffsi.jpl)
文摘The aim of this study was to compare the structure of gut microbiota in Parkinson's disease(PD) patients and healthy controls;and to explore correlations between gut microbiota and PD clinical features. We analyzed fecal bacterial composition of 24 PD patients and 14 healthy volunteers by using 16 S rRNA sequencing. There were significant differences between PD and healthy controls, as well as among different PD stages. The putative cellulose degrading bacteria from the genera Blautia(P=0.018),Faecalibacterium(P=0.048) and Ruminococcus(P=0.019) were significantly decreased in PD compared to healthy controls.The putative pathobionts from the genera Escherichia-Shigella(P=0.038), Streptococcus(P=0.01), Proteus(P=0.022), and Enterococcus(P=0.006) were significantly increased in PD subjects. Correlation analysis indicated that disease severity and PD duration negatively correlated with the putative cellulose degraders, and positively correlated with the putative pathobionts. The results suggest that structural changes of gut microbiota in PD are characterized by the decreases of putative cellulose degraders and the increases of putative pathobionts, which may potentially reduce the production of short chain fatty acids, and produce more endotoxins and neurotoxins; and these changes is potentially associated with the development of PD pathology.
文摘Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor. Some time later postural instability occurs. Pre-motor symptoms such as hyposmia, constipation, REM sleep behavior disorder and depression may antecede these motor symp- toms for years. It would be ideal, if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD). Thus, it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD, if there is a high amour of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein. This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.
基金This study was supported by grants from Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No. XMLX201401), the National Natural Science Foundation of China (No. 81301138), National High-Tech R&D Program of China (863 Program, No. 2015AA020514), National Hundred, Thousand, and Ten Thousand Talents Project of Beijing (No. 2010-005).
文摘Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.
基金supported by the National Natural Science Foundation of China(81473219 and 81973307)partly by 111 Project of the National Ministry of Education(B18035,China).
文摘ProBiotic-4 is a probiotic preparation composed of Bifidobacterium lactis,Lactobacillus casei,Bifidobacterium bifidum,and Lactobacillus acidophilus.This study aims to investigate the effects of ProBiotic-4 on the microbiota-gut-brain axis and cognitive deficits,and to explore the underlying molecular mechanism using senescence-accelerated mouse prone 8(SAMP8)mice.ProBiotic-4 was orally administered to 9-month-old SAMP8 mice for 12 weeks.We observed that ProBiotic-4 significantly improved the memory deficits,cerebral neuronal and synaptic injuries,glial activation,and microbiota composition in the feces and brains of aged SAMP8 mice.ProBiotic-4 substantially attenuated aging-related disruption of the intestinal barrier and blood-brain barrier,decreased interleukin-6 and tumor necrosis factor-αat both mRNA and protein levels,reduced plasma and cerebral lipopolysaccharide(LPS)concentration,toll-like receptor 4(TLR4)expression,and nuclear factor-κB(NF-κB)nuclear translocation in the brain.In addition,not only did ProBiotic-4 significantly decreased the levels ofγ-H2 AX,8-hydroxydesoxyguanosine,and retinoic-acid-inducible gene-I(RIG-I),it also abrogated RIG-I multimerization in the brain.These findings suggest that targeting gut microbiota with probiotics may have a therapeutic potential for the deficits of the microbiota-gut-brain axis and cognitive function in aging,and that its mechanism is associated with inhibition of both TLR4-and RIG-I-mediated NF-κB signaling pathway and inflammatory responses.