This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the...This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the dualit展开更多
文摘This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the dualit