Pseudomonas aeruginosa is known for its antibiotic resistance to the clinicians. The infections caused by this pathogen are hard to treat because of its highly versatile property to mutate and acquire drug resistance....Pseudomonas aeruginosa is known for its antibiotic resistance to the clinicians. The infections caused by this pathogen are hard to treat because of its highly versatile property to mutate and acquire drug resistance. Pseudomonas aeruginosa also possesses intrinsic property of resistance to certain antibiotics like tetracyclines. However;in a practice to overcome the problem of multi drug resistance, clinicians restored the use of some antibiotics that were previously been used to treat the Pseudomonal infections;but they were discontinued because of its toxic effects. Colistin is an example of one such antibiotic. Use of Colistin was barred for its neurotoxicity. However in recent clinical trials, Colistin was reintroduced to fight with this superbug. Sadly in recent years, Pseudomonas aeruginosa developed resistance to Colistin as well. Therefore combined therapy is an alternate and suitable treatment to overcome the infections caused by multidrug-resistant Pseudomonas aeruginosa. The present study is an in vitro study;in which we tested synergy between two antibiotics namely streptomycin and Colistin on 29 clinical isolates of P. aeruginosa collected from hospitals in Jazan city KSA. The combination of two drugs showed synergistic activity on 55.1% of tested strains, while 20.6% strains had partial synergy, whereas indifferent synergy was observed in 13.8% strains and the 6.8% of strains had additive synergy. In addition to this, the drugs when combined also showed antagonism on one strain (3.44%). The present study showed synergistic action on Colistin-resistant Pseudomonas aeruginosa to greater extent (55.1%) by the two tested drugs. Hence Colistin and streptomycin can be used as a suitable combination therapy (in vivo) to treat multidrug resistant P. aeruginosa infections.展开更多
Antibacterial potency of methanol extracts of three green lower plants, Pneumatopteris afra, Platycerium bifurcatum and Nephrolepsis bisserata was determined using agar dilution method on clinical strains of Escherich...Antibacterial potency of methanol extracts of three green lower plants, Pneumatopteris afra, Platycerium bifurcatum and Nephrolepsis bisserata was determined using agar dilution method on clinical strains of Escherichia coli, Staphylococcus aureus, Klebsiella spp. and Salmomelia typhi. Antibacterial activities were observed at concentrations of 12.5, 25.0, 50.0 and 100.0 μg/ml. Their minimum inhibitory concentrations ranged from 12.5~100 μg/ml. Extracts of P. afra and P. bifurcatum were most active. Antibacterial activities observed with N. bisserata were less pronounced with no detectable activity at extract con-centrations of 12.5 and 25.0 μg/ml. E. coli, together with S. aureus appeared to be the most susceptible of the test bacteria while Klebsiella spp. was least sensitive. The significance of our findings is discussed.展开更多
文摘Pseudomonas aeruginosa is known for its antibiotic resistance to the clinicians. The infections caused by this pathogen are hard to treat because of its highly versatile property to mutate and acquire drug resistance. Pseudomonas aeruginosa also possesses intrinsic property of resistance to certain antibiotics like tetracyclines. However;in a practice to overcome the problem of multi drug resistance, clinicians restored the use of some antibiotics that were previously been used to treat the Pseudomonal infections;but they were discontinued because of its toxic effects. Colistin is an example of one such antibiotic. Use of Colistin was barred for its neurotoxicity. However in recent clinical trials, Colistin was reintroduced to fight with this superbug. Sadly in recent years, Pseudomonas aeruginosa developed resistance to Colistin as well. Therefore combined therapy is an alternate and suitable treatment to overcome the infections caused by multidrug-resistant Pseudomonas aeruginosa. The present study is an in vitro study;in which we tested synergy between two antibiotics namely streptomycin and Colistin on 29 clinical isolates of P. aeruginosa collected from hospitals in Jazan city KSA. The combination of two drugs showed synergistic activity on 55.1% of tested strains, while 20.6% strains had partial synergy, whereas indifferent synergy was observed in 13.8% strains and the 6.8% of strains had additive synergy. In addition to this, the drugs when combined also showed antagonism on one strain (3.44%). The present study showed synergistic action on Colistin-resistant Pseudomonas aeruginosa to greater extent (55.1%) by the two tested drugs. Hence Colistin and streptomycin can be used as a suitable combination therapy (in vivo) to treat multidrug resistant P. aeruginosa infections.
文摘Antibacterial potency of methanol extracts of three green lower plants, Pneumatopteris afra, Platycerium bifurcatum and Nephrolepsis bisserata was determined using agar dilution method on clinical strains of Escherichia coli, Staphylococcus aureus, Klebsiella spp. and Salmomelia typhi. Antibacterial activities were observed at concentrations of 12.5, 25.0, 50.0 and 100.0 μg/ml. Their minimum inhibitory concentrations ranged from 12.5~100 μg/ml. Extracts of P. afra and P. bifurcatum were most active. Antibacterial activities observed with N. bisserata were less pronounced with no detectable activity at extract con-centrations of 12.5 and 25.0 μg/ml. E. coli, together with S. aureus appeared to be the most susceptible of the test bacteria while Klebsiella spp. was least sensitive. The significance of our findings is discussed.