期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Fisher判别分析与随机森林的马尾松毛虫害检测 被引量:10
1
作者 许章华 黄旭影 +6 位作者 林璐 王前锋 刘健 陈崇成 余坤勇 周华康 张华峰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第9期2888-2896,共9页
虫害检测算法的构建是耦合"地—天"特征的过程,是实现其遥感监测的重要保障。以福建省三明市、将乐县、沙县、南平市延平区等4个县(区、市)为试验区,收集182组马尾松毛虫害样本数据,随机划分为训练集与验证集,设置5次重复试验... 虫害检测算法的构建是耦合"地—天"特征的过程,是实现其遥感监测的重要保障。以福建省三明市、将乐县、沙县、南平市延平区等4个县(区、市)为试验区,收集182组马尾松毛虫害样本数据,随机划分为训练集与验证集,设置5次重复试验及1次指标筛除试验。结合马尾松毛虫危害下的寄主表征,获取松林叶面积指数LAI、叶面积指数标准误SEL、归一化差值植被指数NDVI、缨帽变换湿度轴WET及影像绿光波段B2、红光波段B3、近红外波段B4等7个地面与遥感特征指标,建立其危害等级的Fisher判别分析与随机森林模型,从检测精度、Kappa系数、ROC曲线等角度综合比较两种算法的检测效果,并给予配对t检验。结果表明:7个指标均具备虫害响应能力,SEL和NDVI相对较弱;Fisher判别分析6次试验的虫害平均检测精度为73.26%,Kappa系数为0.631 9,而RF法则分别为79.30%,0.715 1,显著优于前者(p<0.05);RF法对无危害、轻度危害、中度危害3个虫害等级的检测精度、Kappa系数、AUC均显著高于Fisher判别分析(p<0.05),对于重度危害等级,Fisher判别分析则占优。总体而言,RF法对马尾松毛虫害的检测效果优于Fisher判别分析,但Fisher判别分析对重度危害等级有更高准确性且模型明确、易于推广,可综合应用两种算法开展虫害监测工作。该成果为马尾松毛虫害及其他森林病虫害的有效检测提供技术参考,奠定其遥感监测的基础。 展开更多
关键词 马尾松毛虫害 FISHER判别分析 随机森林法 检测效果 “地-天”特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部