A new 3DVAR-based Ocean Variational Analysis System (OVALS) is developed. OVALS is capable of assimilating in situ sea water temperature and salinity observations and satellite altimetry data. As a component of OVALS,...A new 3DVAR-based Ocean Variational Analysis System (OVALS) is developed. OVALS is capable of assimilating in situ sea water temperature and salinity observations and satellite altimetry data. As a component of OVALS, a new variational scheme is proposed to assimilate the sea surface height data. This scheme considers both the vertical correlation of background errors and the nonlinear temperature-salinity relationship which is derived from the generalization of the linear balance constraints to the nonlinear in the 3DVAR. By this scheme, the model temperature and salinity fields are directly adjusted from the altimetry data. Additionally, OVALS can assimilate the temperature and salinity profiles from the ARGO floats which have been implemented in recent years and some temperature and salinity data such as from expendable bathythermograph, moored ocean buoys, etc. A 21-year assimilation experiment is carried out by using OVALS and the Tropical Pacific circulation model. The results show that the assimilation system may effectively improve the estimations of temperature and salinity by assimilating all kinds of observations. Moreover, the root mean square errors of temperature and salinity in the upper depth less than 420 m reach 0.63℃ and 0.34 psu.展开更多
In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage ...In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×10^4 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is requir展开更多
国际Argo(Array for Real-time Geostrophic Oceanography)计划的实施,提供了前所未有的全球深海大洋0~2000m水深范围内的海水温度和盐度观测资料,在大气和海洋科研业务中应用这一全新的资料,是深入认识大气和海洋变异、提高我国气候...国际Argo(Array for Real-time Geostrophic Oceanography)计划的实施,提供了前所未有的全球深海大洋0~2000m水深范围内的海水温度和盐度观测资料,在大气和海洋科研业务中应用这一全新的资料,是深入认识大气和海洋变异、提高我国气候预测、海洋监测分析和预报能力的一个关键所在。通过开发非线性温-盐协调同化方案和利用同化高度计资料来调整模式的温度和盐度场,建立了可同化包括Argo等多种海洋观测资料的全球海洋资料变分同化系统,提高了对全球海洋的监测分析能力。实现了海洋资料同化系统与全球海气耦合模式的耦合,显著提高了短期气候预测水平。利用Argo资料改进了海洋动力模式中的物理过程参数化方案,有效提高了海洋模式对真实大洋的模拟能力和对厄尔尼诺/拉尼娜的预测能力。开发了利用Argo浮标漂流轨迹推算全球海洋表层和中层流的方法,提高了推算的全球表层流、中层流资料质量,有效弥补了洋流观测的匮乏。展开更多
为了解热带中西太平洋延绳钓黄鳍金枪鱼(Thunnus albacares)适宜的温跃层参数分布区间,采用Argo浮标温度信息和中西太平洋渔业委员会(The Western and Central Pacific Fisheries Commission,WCPFC)的黄鳍金枪鱼延绳钓渔获数据,绘制了...为了解热带中西太平洋延绳钓黄鳍金枪鱼(Thunnus albacares)适宜的温跃层参数分布区间,采用Argo浮标温度信息和中西太平洋渔业委员会(The Western and Central Pacific Fisheries Commission,WCPFC)的黄鳍金枪鱼延绳钓渔获数据,绘制了热带中西太平洋月平均温跃层特征参数和月平均CPUE的空间叠加图,用于分析热带中西太平洋黄鳍金枪鱼中心渔场时空分布和温跃层特征参数间的关系。分析结果表明:热带中西太平洋温跃层上界深度、温度具有明显的季节性变化,而温跃层下界深度、温度季节性变化不明显,黄鳍金枪鱼中心渔场分布和温跃层季节性变化有关。全年中心渔场的位置分布在温跃层上界深度高值区域,随温跃层上界深度高值区域季节性南北移动。在新几内亚以东纬向区域(5°N^10°S,150°E^170°W)上界深度值全年都在70~100m之间,全年都是延绳钓黄鳍金枪鱼中心渔场。中心渔场上界温度多在26℃以上,但是在上界温度超过30℃区域,CPUE值较小。中心渔场主要分布在温跃层下界深度两条高值带之间区域,在温跃层下界深度超过300m和小于150m区域,CPUE值均偏低。中心渔场主要分布在下界温度低于13℃区域,下界温度超过17℃难以形成中心渔场。频次分析和经验累积分布函数计算其适宜温跃层特征参数分布,得出中西太平洋黄鳍金枪鱼适宜的温跃层上界温度和深度分别是27~29.9℃和70~109m;适宜的温跃层下界温度和深度分别是11~13.9℃和250~299m。文章初步得出中西太平洋黄鳍金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为我国金枪鱼实际生产作业提供技术支持。展开更多
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of ...A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.展开更多
Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysi...Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysis systems. Specifically, an estimation of correlation scales that can improve effectively the accuracy of Ar- go objective analysis has been developed. This method can automatically adapt to the gradient change of a variable and is referred to as "gradient-dependent correlation scale method". Its effect on the Argo objective analysis is verified theoretically with Gaussian pulse and spectrum analysis. The results of one-dimensional simulation experiment show that the gradient-dependent correlation scales can improve the adaptability of the objective analysis system, making it possible for the analysis scheme to fully absorb the shortwave information of observation in areas with larger oceanographic gradients. The new scheme is applied to the Argo data obiective analysis system in the Pacific Ocean. The results are obviously improved.展开更多
ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying sali...ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying salinity on the evolution of the El Nifio Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During E1 Nifio (La Nifia), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°-160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160~E- 170~W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a onedimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.展开更多
The meso-scale circulation at the intermediate depth east of Mindanao is studied using Argo profiling floats observations. The trajectories and the parking-depth velocities of Argo floats show that the intermediate-de...The meso-scale circulation at the intermediate depth east of Mindanao is studied using Argo profiling floats observations. The trajectories and the parking-depth velocities of Argo floats show that the intermediate-depth circulation east of Mindanao contains significant meso-scale features that are highly variable both in space and in time. Both cyclonic and anticyclonic eddies at the intermediate depth (1000–2000 m) are indicated by the trajectories east of Mindanao. The mean tangential velocities of these eddies are about 10 cm/s at 2000 m and over 20 cm/s at 1000 m, which indicates that the geostrophic calculation may contain large errors due to the vigorous eddy activity at the reference levels. The analyses also suggest that these eddies might play an important role in mass and vorticity balances of the intermediate-depth circulation east of Mindanao.展开更多
This paper reviews the current achievements of the China Argo project. It considers aspects of both the construction of the Argo observing array, float technology, and the quality control and sharing of its data. The ...This paper reviews the current achievements of the China Argo project. It considers aspects of both the construction of the Argo observing array, float technology, and the quality control and sharing of its data. The developments of associated data products and data applications for use in the fields of ocean, atmosphere, and climate research are discussed, particularly those related to tropical cyclones (typhoons), ocean circulation, mesoscale eddies, turbulence, oceanic heat/salt storage and transportation, water masses, and operational oceanic/atmospheric/climatic forecasts and predictions. Finaliy, the challenges and opportunities involved in the long-term maintenance and sustained development of the China Argo ocean observation network are outlined. Discussion also focuses on the necessity for increasing the number of floats in the Indian Ocean and for expanding the regional Argo observation network in the South China Sea, together with the importance of promoting the use of Argo data by the maritime countries of Southeast Asia and India.展开更多
The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 10...The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats. The average speed difference between NCEP and ARGO values ranges from about -2.3cm s^-1 to -1.8 cm s^-1. The second is that the velocity difference between the ocean model and the observations at 2000 dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.展开更多
基金This research was supported by the Chinese Academy of Sciences(Grant No.KZCX3-SW-222)the National Natural Science Foundation of China(Grant Nos.60225015,40233033 and 40221503).
文摘A new 3DVAR-based Ocean Variational Analysis System (OVALS) is developed. OVALS is capable of assimilating in situ sea water temperature and salinity observations and satellite altimetry data. As a component of OVALS, a new variational scheme is proposed to assimilate the sea surface height data. This scheme considers both the vertical correlation of background errors and the nonlinear temperature-salinity relationship which is derived from the generalization of the linear balance constraints to the nonlinear in the 3DVAR. By this scheme, the model temperature and salinity fields are directly adjusted from the altimetry data. Additionally, OVALS can assimilate the temperature and salinity profiles from the ARGO floats which have been implemented in recent years and some temperature and salinity data such as from expendable bathythermograph, moored ocean buoys, etc. A 21-year assimilation experiment is carried out by using OVALS and the Tropical Pacific circulation model. The results show that the assimilation system may effectively improve the estimations of temperature and salinity by assimilating all kinds of observations. Moreover, the root mean square errors of temperature and salinity in the upper depth less than 420 m reach 0.63℃ and 0.34 psu.
基金The National Basic Research Program(973 Program)of China under contract No.2013CB430301the National Natural Science Foundation of China under contract No.41206022the Ministry of Science and Technology of China under contract No.2012FY112300
文摘In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×10^4 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is requir
文摘国际Argo(Array for Real-time Geostrophic Oceanography)计划的实施,提供了前所未有的全球深海大洋0~2000m水深范围内的海水温度和盐度观测资料,在大气和海洋科研业务中应用这一全新的资料,是深入认识大气和海洋变异、提高我国气候预测、海洋监测分析和预报能力的一个关键所在。通过开发非线性温-盐协调同化方案和利用同化高度计资料来调整模式的温度和盐度场,建立了可同化包括Argo等多种海洋观测资料的全球海洋资料变分同化系统,提高了对全球海洋的监测分析能力。实现了海洋资料同化系统与全球海气耦合模式的耦合,显著提高了短期气候预测水平。利用Argo资料改进了海洋动力模式中的物理过程参数化方案,有效提高了海洋模式对真实大洋的模拟能力和对厄尔尼诺/拉尼娜的预测能力。开发了利用Argo浮标漂流轨迹推算全球海洋表层和中层流的方法,提高了推算的全球表层流、中层流资料质量,有效弥补了洋流观测的匮乏。
文摘为了解热带中西太平洋延绳钓黄鳍金枪鱼(Thunnus albacares)适宜的温跃层参数分布区间,采用Argo浮标温度信息和中西太平洋渔业委员会(The Western and Central Pacific Fisheries Commission,WCPFC)的黄鳍金枪鱼延绳钓渔获数据,绘制了热带中西太平洋月平均温跃层特征参数和月平均CPUE的空间叠加图,用于分析热带中西太平洋黄鳍金枪鱼中心渔场时空分布和温跃层特征参数间的关系。分析结果表明:热带中西太平洋温跃层上界深度、温度具有明显的季节性变化,而温跃层下界深度、温度季节性变化不明显,黄鳍金枪鱼中心渔场分布和温跃层季节性变化有关。全年中心渔场的位置分布在温跃层上界深度高值区域,随温跃层上界深度高值区域季节性南北移动。在新几内亚以东纬向区域(5°N^10°S,150°E^170°W)上界深度值全年都在70~100m之间,全年都是延绳钓黄鳍金枪鱼中心渔场。中心渔场上界温度多在26℃以上,但是在上界温度超过30℃区域,CPUE值较小。中心渔场主要分布在温跃层下界深度两条高值带之间区域,在温跃层下界深度超过300m和小于150m区域,CPUE值均偏低。中心渔场主要分布在下界温度低于13℃区域,下界温度超过17℃难以形成中心渔场。频次分析和经验累积分布函数计算其适宜温跃层特征参数分布,得出中西太平洋黄鳍金枪鱼适宜的温跃层上界温度和深度分别是27~29.9℃和70~109m;适宜的温跃层下界温度和深度分别是11~13.9℃和250~299m。文章初步得出中西太平洋黄鳍金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为我国金枪鱼实际生产作业提供技术支持。
基金the Ministry of Science and Technology of China (No.2002CB714001 and 2001CCB00200)the Youth Fund of State Oceanic Administration (No. 2004203)
文摘A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.
基金The Marine Public Welfare Special Funds,the State Oceanic Administration of China under contract No.200705022the Technology Special Basic Work,the Ministry of Science and Technology under contract No.2012FY112300the Basic Scientific Research Special Funds of the Second Institute of Oceanography,the State Oceanic Administration of China under contract No.IT0904
文摘Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysis systems. Specifically, an estimation of correlation scales that can improve effectively the accuracy of Ar- go objective analysis has been developed. This method can automatically adapt to the gradient change of a variable and is referred to as "gradient-dependent correlation scale method". Its effect on the Argo objective analysis is verified theoretically with Gaussian pulse and spectrum analysis. The results of one-dimensional simulation experiment show that the gradient-dependent correlation scales can improve the adaptability of the objective analysis system, making it possible for the analysis scheme to fully absorb the shortwave information of observation in areas with larger oceanographic gradients. The new scheme is applied to the Argo data obiective analysis system in the Pacific Ocean. The results are obviously improved.
基金supported by the National Basic Research Program of China (Grant No.2012CB955202)the National Natural Science Foundation of China (Grant No.41176014)
文摘ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying salinity on the evolution of the El Nifio Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During E1 Nifio (La Nifia), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°-160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160~E- 170~W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a onedimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB816002 and 2006CB403600)National Natural Science Foundation of China (Grant No. 40806010)
文摘The meso-scale circulation at the intermediate depth east of Mindanao is studied using Argo profiling floats observations. The trajectories and the parking-depth velocities of Argo floats show that the intermediate-depth circulation east of Mindanao contains significant meso-scale features that are highly variable both in space and in time. Both cyclonic and anticyclonic eddies at the intermediate depth (1000–2000 m) are indicated by the trajectories east of Mindanao. The mean tangential velocities of these eddies are about 10 cm/s at 2000 m and over 20 cm/s at 1000 m, which indicates that the geostrophic calculation may contain large errors due to the vigorous eddy activity at the reference levels. The analyses also suggest that these eddies might play an important role in mass and vorticity balances of the intermediate-depth circulation east of Mindanao.
基金The National Natural Science Foundation under contract No.41621064the Science and Technology Basic Work of the Ministry of Science and Technology of China under contract No.2012FY112300the Public Science and Technology Research Funds Projects of Ocean under contract No.201005033
文摘This paper reviews the current achievements of the China Argo project. It considers aspects of both the construction of the Argo observing array, float technology, and the quality control and sharing of its data. The developments of associated data products and data applications for use in the fields of ocean, atmosphere, and climate research are discussed, particularly those related to tropical cyclones (typhoons), ocean circulation, mesoscale eddies, turbulence, oceanic heat/salt storage and transportation, water masses, and operational oceanic/atmospheric/climatic forecasts and predictions. Finaliy, the challenges and opportunities involved in the long-term maintenance and sustained development of the China Argo ocean observation network are outlined. Discussion also focuses on the necessity for increasing the number of floats in the Indian Ocean and for expanding the regional Argo observation network in the South China Sea, together with the importance of promoting the use of Argo data by the maritime countries of Southeast Asia and India.
基金This research is supported by Natural Science Foundation of China(Contract No.40437017 and 40225015).
文摘The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats. The average speed difference between NCEP and ARGO values ranges from about -2.3cm s^-1 to -1.8 cm s^-1. The second is that the velocity difference between the ocean model and the observations at 2000 dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.