The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, d...The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures, liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinistral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions.展开更多
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statist...Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.展开更多
In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focuse...In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 ea展开更多
The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthq...The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthquake of M=8.1 on November 14, 2001, especially the horizontal crustal movement in the western part of China. Based on the datum defined by a group of stable stations with small mutual horizontal displacements for a few years, the time series of horizontal displacements at fiducial stations were obtained. Significant anomalous horizontal displacements had appeared at the fiducial stations in the western part of China since early November 2000 and several earthquakes with the magnitudes about 6.0 had occurred in Yunnan and Sichuan Provinces. The northward components of the horizontal displacement at the fiducial stations in west China had decreased signifi-cantly and even changed in the opposite sense since mid April 2001. After the earthquake, the northward dis-placements still decreased and there were significant westward displacements. The process of the crustal move-ment in the western part of Chinese mainland (in reference to east China) suggests that the main force source for this earthquake came from the northward pushing of the Indian plate. The great earthquake released a large amount of energy, as a result, the action applied by the Indian plate to Chinese mainland diminished significantly and after the great earthquake, the seismic activity in Chinese mainland decreased considerably until the end of 2002.展开更多
After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate t...After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate the primary mechanism of this behavior of seismic activity,using a 2-D finite element numerical model with tectonic dynamic settings and GPS horizontal displacements as the constraints. In addition,compared with the NEtrending seismicity belt triggered by the 1996 Xiatongmoin earthquake,we discuss the future earthquake hazard in and around Tibet. Our results show that: the NE-directed seismicity belt is the response of enhanced loading on the anisotropic Qinghai-Tibetan plateau from the Indian plate and earthquake thrusting. Also,this possibly implies that a forthcoming strong earthquake may fill in the gaps in the NE-directed seismicity belt or enhance the seismic hazard in the eastern( the north-south seismic zone) and western( Tianshan tectonic region) parts near the NE-directed belt.展开更多
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ...The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.展开更多
Windows 8.1与之前版本的Windows不同,启动后会进入专为触摸设计的Metro风格"开始屏幕",该屏幕内排列着很多动态磁贴小方块,其大小和位置允许调整,你可以随意移动、删除或归类,只要点选某个小方块,拖动鼠标即可将之移到任何位置,如果...Windows 8.1与之前版本的Windows不同,启动后会进入专为触摸设计的Metro风格"开始屏幕",该屏幕内排列着很多动态磁贴小方块,其大小和位置允许调整,你可以随意移动、删除或归类,只要点选某个小方块,拖动鼠标即可将之移到任何位置,如果误触"卸载"选项还能将软件从Win8.1中删除,假如别人用了你的Win8.1,由于操作习惯不同,"开始屏幕"内动态磁贴可能会被调得乱七八糟,自己使用时又得重新排列整理,如何避免以上情况发生呢?以下两种对策可帮你解决此类问题!展开更多
Windows 8.1内置了Internet Explorer 11版,不过目前很多网站都未针对IE11跟进做网页兼容性测试及优化,使得用IE11浏览时会出现很多问题,例如迅雷和工行网银助手、农行、建行、支付宝等插件无法使用,优酷等视频网站无法浏览、无法新建...Windows 8.1内置了Internet Explorer 11版,不过目前很多网站都未针对IE11跟进做网页兼容性测试及优化,使得用IE11浏览时会出现很多问题,例如迅雷和工行网银助手、农行、建行、支付宝等插件无法使用,优酷等视频网站无法浏览、无法新建选项卡,首页设置为空白时打开出错,Flash视频无法播放、网页按钮无法点击等等,下面介绍Win8.1系统IE11六个常见故障及其排除办法。展开更多
An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The colla...An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The collapses are of four types, bedrock, soil mass and ice mass collapses and avalanches. The spatial distribution and the characteristics of development of the collapses are analyzed in the paper. Comparised with those caused by other earthquakes, the collapses are smaller in scale. In addition to the lithological characteristics of the crustal media, topographic, geomorphic and climatic factors, weaker seismic ground motion is an important cause for formation of the smaller-scale collapses. The long surface rupture zone and weaker ground motion are important features of the seismic rupture, which may be related to the structure of the preexisting fault.展开更多
文摘The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures, liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinistral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions.
基金Key Project of Disaster Reduction of Jiangxi Province during the tenth Five-Year Plan (JX105-05).
文摘Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.
基金This project is sponsored by the National Support of Science and Technology Research"Study on Techniques for Monitoring and Predicting of Strong Earthquake"and the Joint Earthquake Science Foundation of CEA(A07066),China
文摘In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 ea
基金The National Development and Programming Project for Key Basic Research (95-13-03-07).
文摘The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthquake of M=8.1 on November 14, 2001, especially the horizontal crustal movement in the western part of China. Based on the datum defined by a group of stable stations with small mutual horizontal displacements for a few years, the time series of horizontal displacements at fiducial stations were obtained. Significant anomalous horizontal displacements had appeared at the fiducial stations in the western part of China since early November 2000 and several earthquakes with the magnitudes about 6.0 had occurred in Yunnan and Sichuan Provinces. The northward components of the horizontal displacement at the fiducial stations in west China had decreased signifi-cantly and even changed in the opposite sense since mid April 2001. After the earthquake, the northward dis-placements still decreased and there were significant westward displacements. The process of the crustal move-ment in the western part of Chinese mainland (in reference to east China) suggests that the main force source for this earthquake came from the northward pushing of the Indian plate. The great earthquake released a large amount of energy, as a result, the action applied by the Indian plate to Chinese mainland diminished significantly and after the great earthquake, the seismic activity in Chinese mainland decreased considerably until the end of 2002.
基金funded by China Comprehensive Geophysical Field Observation in North China of Earthquake Scientific Research(201508009)
文摘After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate the primary mechanism of this behavior of seismic activity,using a 2-D finite element numerical model with tectonic dynamic settings and GPS horizontal displacements as the constraints. In addition,compared with the NEtrending seismicity belt triggered by the 1996 Xiatongmoin earthquake,we discuss the future earthquake hazard in and around Tibet. Our results show that: the NE-directed seismicity belt is the response of enhanced loading on the anisotropic Qinghai-Tibetan plateau from the Indian plate and earthquake thrusting. Also,this possibly implies that a forthcoming strong earthquake may fill in the gaps in the NE-directed seismicity belt or enhance the seismic hazard in the eastern( the north-south seismic zone) and western( Tianshan tectonic region) parts near the NE-directed belt.
基金Joint Earthquake Science Foundation of China (201001).
文摘The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.
文摘Windows 8.1内置了Internet Explorer 11版,不过目前很多网站都未针对IE11跟进做网页兼容性测试及优化,使得用IE11浏览时会出现很多问题,例如迅雷和工行网银助手、农行、建行、支付宝等插件无法使用,优酷等视频网站无法浏览、无法新建选项卡,首页设置为空白时打开出错,Flash视频无法播放、网页按钮无法点击等等,下面介绍Win8.1系统IE11六个常见故障及其排除办法。
基金TheresearchwassupportedunderakeyScienceandTechnologyResearchProjectoftheScienceandTechnologyDepartmentofQinghaiProvince (2 0 0 2 N 14 1),China
文摘An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The collapses are of four types, bedrock, soil mass and ice mass collapses and avalanches. The spatial distribution and the characteristics of development of the collapses are analyzed in the paper. Comparised with those caused by other earthquakes, the collapses are smaller in scale. In addition to the lithological characteristics of the crustal media, topographic, geomorphic and climatic factors, weaker seismic ground motion is an important cause for formation of the smaller-scale collapses. The long surface rupture zone and weaker ground motion are important features of the seismic rupture, which may be related to the structure of the preexisting fault.