飞翼布局是飞行器的重要形式,为研究飞翼布局的电磁散射特性,以美军典型飞翼飞行器B-2、、X-45C、X-47B、X-45A为基础,分别建立了四种不同外形布局特点的电磁分析模型A、B、C、D。基于物理光学法,数值模拟了不同威胁状态的RCS计算曲线,...飞翼布局是飞行器的重要形式,为研究飞翼布局的电磁散射特性,以美军典型飞翼飞行器B-2、、X-45C、X-47B、X-45A为基础,分别建立了四种不同外形布局特点的电磁分析模型A、B、C、D。基于物理光学法,数值模拟了不同威胁状态的RCS计算曲线,研究了各布局RCS曲线分布特点及其俯仰角、频率响应关系。计算结果表明,沿周向RCS分布与布局结构相关,俯仰角的较小变化对曲线分布形式和幅值影响不大;频率增加时RCS幅值减小,曲线向内收敛,震荡性增加;布局B隐身性能较好,头向30°角域RCS均值在15 GHz为-46.754 d Bsm;由于结构区别,布局C、D、A隐身性能依次降低;总体来看,飞翼布局有较好的隐身性能。展开更多
文摘飞翼布局是飞行器的重要形式,为研究飞翼布局的电磁散射特性,以美军典型飞翼飞行器B-2、、X-45C、X-47B、X-45A为基础,分别建立了四种不同外形布局特点的电磁分析模型A、B、C、D。基于物理光学法,数值模拟了不同威胁状态的RCS计算曲线,研究了各布局RCS曲线分布特点及其俯仰角、频率响应关系。计算结果表明,沿周向RCS分布与布局结构相关,俯仰角的较小变化对曲线分布形式和幅值影响不大;频率增加时RCS幅值减小,曲线向内收敛,震荡性增加;布局B隐身性能较好,头向30°角域RCS均值在15 GHz为-46.754 d Bsm;由于结构区别,布局C、D、A隐身性能依次降低;总体来看,飞翼布局有较好的隐身性能。