动态安全域(DSR)的暂态稳定边界可以近似表示为超平面,由此提出了一种DSR的快速求解方法。该方法分别对事故前系统的稳定运行点、事故中系统的故障轨迹和事故后系统的暂态稳定性进行有功功率的小扰动分析,然后依据整个暂态响应过程中状...动态安全域(DSR)的暂态稳定边界可以近似表示为超平面,由此提出了一种DSR的快速求解方法。该方法分别对事故前系统的稳定运行点、事故中系统的故障轨迹和事故后系统的暂态稳定性进行有功功率的小扰动分析,然后依据整个暂态响应过程中状态变量的连续性,将不同阶段的分析结果联系起来,最终推导出了超平面形式的DSR解析表达式。应用暂态能量函数分析给出了注入空间上的实用动态安全判据,以此来量化暂态稳定性指标,从而实现对事故后系统的有功功率小扰动分析。该方法的有效性在New England 10机39节点系统上得到了验证。展开更多
This is a survey on several problems on approximation theory in normed linear spaces. 1. Discuss conditions on hyperplanes or 2-codim subspaces which to be the proximinal sets. 2. Exhibit proximinal sets on b. s. a. 3...This is a survey on several problems on approximation theory in normed linear spaces. 1. Discuss conditions on hyperplanes or 2-codim subspaces which to be the proximinal sets. 2. Exhibit proximinal sets on b. s. a. 3. Find the values of the metric projection bounds (MPB) of some particular spaces, such as l_p^2. 4. Introduce some new results on bounds of linear projections onto finite-dimension subspaces or hyperplanes. By the way, we suggest some open problems.展开更多
文摘动态安全域(DSR)的暂态稳定边界可以近似表示为超平面,由此提出了一种DSR的快速求解方法。该方法分别对事故前系统的稳定运行点、事故中系统的故障轨迹和事故后系统的暂态稳定性进行有功功率的小扰动分析,然后依据整个暂态响应过程中状态变量的连续性,将不同阶段的分析结果联系起来,最终推导出了超平面形式的DSR解析表达式。应用暂态能量函数分析给出了注入空间上的实用动态安全判据,以此来量化暂态稳定性指标,从而实现对事故后系统的有功功率小扰动分析。该方法的有效性在New England 10机39节点系统上得到了验证。
文摘This is a survey on several problems on approximation theory in normed linear spaces. 1. Discuss conditions on hyperplanes or 2-codim subspaces which to be the proximinal sets. 2. Exhibit proximinal sets on b. s. a. 3. Find the values of the metric projection bounds (MPB) of some particular spaces, such as l_p^2. 4. Introduce some new results on bounds of linear projections onto finite-dimension subspaces or hyperplanes. By the way, we suggest some open problems.