Viscous fluid model and potential flow model with and without artificial damping force(f=-μV,μ the damping coefficient and V the local averaging flow velocity) are employed in this work to investigate the phenomenon...Viscous fluid model and potential flow model with and without artificial damping force(f=-μV,μ the damping coefficient and V the local averaging flow velocity) are employed in this work to investigate the phenomenon of fluid resonance in narrow gaps between multi-bodies in close proximity under water waves.The numerical results are compared with experimental data available in the literature.The comparison demonstrates that both the viscous fluid model and the potential flow model are able to predict the resonant frequency reasonably well.However the conventional potential flow model(without artificial damping term) significantly over-predicts the wave height in narrow gaps around the resonant frequency.In order to calibrate the appropriate damping coefficient used for the potential model and make it work as well as the viscous fluid model in predicting the resonant wave height in narrow gaps but with little computational efforts,the dependence of damping coefficient μ on the body geometric dimensions is examined considering the parameters of gap width Bg,body draft D,body breadth ratio Br and body number n(n = 2,3),where Br = BB/BA for the case of two bodies(Body A and Body B) with different breadths of BA and BB,respectively.It was confirmed that the damping coefficient used for the potential flow model is not sensitive to the geometric dimensions and spatial arrangement.It was found that μ∈ [0.4,0.5] may guarantee the variation of Hg/H0 with kh to be generally in good agreement with the experimental data and the results of viscous fluid model,where Hg is the excited wave height in narrow gaps under various dimensionless incident wave frequencies kh,H0 is the incident wave height,k = 2π/L is the wave number and h is the water depth.展开更多
This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is differ...This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is different from the usual Gaussian noise, and it has small fluctuations with the unpredictable jumps to describe the random fluctuations in an FHN model. SR is determined by the signal-to-noise ratio (SNR), and the numerical simulation results show the occurrence of the SR phenomena in the given FHN system. The influence of various parameters of the LEvy noise and the FHN model on the SR will be exam- ined, and some mechanisms of the LEvy noise-induced SR are presented which are different from those of the Gaussian noise.展开更多
基金supports from the Natural National Science Foundation of China (Grant Nos.50909016,50921001 and 10802014)support of ARC Discovery Project Program (Grant No. DP0557060)supported by the Open Fund from the State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. GZ0909)
文摘Viscous fluid model and potential flow model with and without artificial damping force(f=-μV,μ the damping coefficient and V the local averaging flow velocity) are employed in this work to investigate the phenomenon of fluid resonance in narrow gaps between multi-bodies in close proximity under water waves.The numerical results are compared with experimental data available in the literature.The comparison demonstrates that both the viscous fluid model and the potential flow model are able to predict the resonant frequency reasonably well.However the conventional potential flow model(without artificial damping term) significantly over-predicts the wave height in narrow gaps around the resonant frequency.In order to calibrate the appropriate damping coefficient used for the potential model and make it work as well as the viscous fluid model in predicting the resonant wave height in narrow gaps but with little computational efforts,the dependence of damping coefficient μ on the body geometric dimensions is examined considering the parameters of gap width Bg,body draft D,body breadth ratio Br and body number n(n = 2,3),where Br = BB/BA for the case of two bodies(Body A and Body B) with different breadths of BA and BB,respectively.It was confirmed that the damping coefficient used for the potential flow model is not sensitive to the geometric dimensions and spatial arrangement.It was found that μ∈ [0.4,0.5] may guarantee the variation of Hg/H0 with kh to be generally in good agreement with the experimental data and the results of viscous fluid model,where Hg is the excited wave height in narrow gaps under various dimensionless incident wave frequencies kh,H0 is the incident wave height,k = 2π/L is the wave number and h is the water depth.
基金supported by the the National Natural Science Foundation of China(Grant Nos.11372247&11472224)the NPU Foundation for Undergraduate Graduation Design
文摘This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is different from the usual Gaussian noise, and it has small fluctuations with the unpredictable jumps to describe the random fluctuations in an FHN model. SR is determined by the signal-to-noise ratio (SNR), and the numerical simulation results show the occurrence of the SR phenomena in the given FHN system. The influence of various parameters of the LEvy noise and the FHN model on the SR will be exam- ined, and some mechanisms of the LEvy noise-induced SR are presented which are different from those of the Gaussian noise.