The ZrO2 thin films deposited on Si (100) were successfully synthesized by solgel process and deposited by using spin-coating technique.The structural properties of ZrO2 thin films were investigated by X-Ray Diffracti...The ZrO2 thin films deposited on Si (100) were successfully synthesized by solgel process and deposited by using spin-coating technique.The structural properties of ZrO2 thin films were investigated by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and electrical properties were studied by conventional techniques like Capacitance-Voltage (C-V) measurement and Current–Voltage (I–V) measurement. The XRD of ZrO2 films shows the films crystallized and exists in two phases at 700℃ calcinations temperature. The C–V characteristics of all the dielectric films that involved distinct inversion, depletion, and accumulation were clearly revealed in MIS structure. I-V characteristics of ZrO2 thin films on Si shows decreased saturation current on calcinations temperatures. The XPS measurement reveals that a zirconium silicate interfacial layer has formed in the ZrO2/Si Systems.展开更多
This paper proposes a novel high-efficiency generation technique for photovoltaic(PV) system,named maximum power point capturing(MPPC) technique. This is an aperiodic perturbation MPPC technique compared to the conven...This paper proposes a novel high-efficiency generation technique for photovoltaic(PV) system,named maximum power point capturing(MPPC) technique. This is an aperiodic perturbation MPPC technique compared to the conventional periodic perturbation maximum power point tracking technique. Firstly, under a closed-loop circuit and an open-loop circuit,the complete I-V curves and P-V curves are defined. Secondly, the proposed MPPC technique is based on the complete I-V curves and a practical model of solar PV systems.The proposed method realizes that maximum power point(MPP) is captured online, and its control strategy is designed to set a steady operating area around MPP. The duty cycle keeps constant when the operating point is within the steady operating area, i.e., aperiodic perturbation, and when the operating point is outside the steady operating area, MPPC is triggered to capture a new MPP with an updated steady operating area. Simulation results demonstrate that no oscillations exist in steady-state;dynamic performances are improved;and only two perturbations are required to capture the new MPP. Using the proposed MPPC method,low voltage ride through and high voltage ride through can be prevented.展开更多
Tribological behavior of nanostructured pure Al and Al–Al12(Fe,V)3Si alloys containing 27(FVS0812) and 37(FVS1212) vol% of Al12(Fe,V)3Si precipitates was investigated. All samples were prepared using mechanic...Tribological behavior of nanostructured pure Al and Al–Al12(Fe,V)3Si alloys containing 27(FVS0812) and 37(FVS1212) vol% of Al12(Fe,V)3Si precipitates was investigated. All samples were prepared using mechanical alloying followed by hot pressing. Wear tests were performed at room temperature using a pin-on-disk machine. Results showed that the presence of Al12(Fe,V)3Si precipitates increases the wear resistance of nanostructured Al, and the wear resistance increases with increasing the Al12(Fe,V)3Si content. Scanning electron microscopy images of worn surfaces and wear debris demonstrated that abrasion and adhesion are the governing wear mechanisms for the nanostructured FVS0812 alloy at 2 and 5 N normal loads, whereas for the nanostructured FVS1212 alloy, the dominant wear mechanism is abrasion at these loads. A mechanically mixed layer(MML) containing Fe and O was formed on the worn surfaces of FVS0812 and FVS1212 samples at 10 N normal load. Formation and delamination of MML controls the wear behavior of these samples at the normal load of 10 N. It is also found that the presence of Al12(Fe,V)3Si precipitates decreases the friction coefficient of nanostructured Al.展开更多
We report an effective enhancement in light extraction of Ga N-based light-emitting diodes(LEDs) with an Al-doped Zn O(AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 in...We report an effective enhancement in light extraction of Ga N-based light-emitting diodes(LEDs) with an Al-doped Zn O(AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent throughpore anodic aluminum oxide(AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 m A and 56% at 100 m A compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage.展开更多
Selective laser melting was used to produce an aluminum alloy Al-8.5Fe-1.3V-1.7Si(wt%). The effects of heat treatment on microstructure evolution and phase stability during long-term thermal exposure of the deposits...Selective laser melting was used to produce an aluminum alloy Al-8.5Fe-1.3V-1.7Si(wt%). The effects of heat treatment on microstructure evolution and phase stability during long-term thermal exposure of the deposits were investigated. Results show that the microquasi-crystalline phase, Al12(Fe,V)3Si and AlmF e metastable phases coexisted with α-Al in the as-produced alloy. Annealing at 400 ℃ resulted in decomposition of microquasi-crystalline phase and supersaturated α-Al into Al12(Fe, V)3Si phase in the fusion zone, accompanied by the decrease in alloy hardness. The activation energy of this decomposition process was 115 k J/mol. A more homogenous microstructure was obtained after annealing at 400 °C for 60 min,which was resistant to coarsening exposed at 425 °C up to 500 h. The Al12(Fe,V)3Si and AlmF e phases were coarsened at 475 and 525℃ with increasing the exposure time. Coarsening of Al12(Fe,V)3Si phase was attributed to a combination of volume diffusion and grain boundary diffusion mechanism of Fe. Heat treatment at 600℃ resulted in accelerated microstructure coarsening and formation of large-sized equilibrium phases, which signi?cantly degraded the room temperature microhardness.展开更多
In this paper, the interface states of the AlGaN/GaN metal–insulator–semiconductor(MIS) high electron mobility transistors(HEMTs) with an Al2 O3 gate dielectric are systematically evaluated. By frequency-dependent c...In this paper, the interface states of the AlGaN/GaN metal–insulator–semiconductor(MIS) high electron mobility transistors(HEMTs) with an Al2 O3 gate dielectric are systematically evaluated. By frequency-dependent capacitance and conductance measurements, trap density and time constant at Al2 O3/AlGaN and AlGaN/GaN interface are determined.The experimental results reveal that the density of trap states and the activation energy at the Al2 O3/AlGaN interface are much higher than at the AlGaN/GaN interface. The photo-assisted capacitance-voltage measurements are performed to characterize the deep-level traps located near mid-gap at the Al2 O3/AlGaN interface, which indicates that a density of deep-level traps is lower than the density of the shallow-level states.展开更多
Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential di...Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential difference between the Fermi energy level and the bottom of the conduction bandapparent barrier heightseries resistanceand the interface state density Nss have been investigated.From the temperature dependence of(C–V)it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of Pt Si formation on semiconductor and the presence of hexagonal voids of Si(111).展开更多
The present work describes the effect of deposition potentials on structural,morphological,optical,electrical and photoconductivity responses of cuprous oxide(Cu2O)thin films deposited on fluorine-doped tin oxide glas...The present work describes the effect of deposition potentials on structural,morphological,optical,electrical and photoconductivity responses of cuprous oxide(Cu2O)thin films deposited on fluorine-doped tin oxide glass substrate by employing electrodeposition technique.X-ray diffraction patterns reveal that the deposited films have a cubic structure grown along the preferential(111)growth orientation and crystallinity of the film deposited at.0.4 V is improved compared to the films deposited at.0.2,.0.3 and.0.5 V.Scanning electron microscopy displays that surface morphology of Cu2O film has a well-defined three-sided pyramid-shaped grains which are uniformly distributed over the surface of the substrates and are significantly changed as a function of deposition potential.Raman and photoluminescence spectra manifest that the film deposited at.0.4 V has a good crystal quality with higher acceptor concentration compared to other films.UV–visible analysis illustrates that the absorption of Cu2O thin film deposited at.0.4 V is notably higher compared to other films and the band gap of Cu2O thin films decreases from 2.1 to 2.04 eV with an increase in deposition potential from.0.2 to.0.5 V.The frequency–temperature dependence of impedance analysis shows that the film deposited at.0.4 V has a high conductivity.I– V measurements elucidate that the film deposited at.0.4 V exhibits a good photoconductivity response compared to films deposited in other deposition potentials.展开更多
In this study, the allotropic phase transition and its effect on the magnetic behavior of Fe Co–7 wt%V alloy were investigated. It was found that c phase is observed in the microstructure in the as-cast condition, an...In this study, the allotropic phase transition and its effect on the magnetic behavior of Fe Co–7 wt%V alloy were investigated. It was found that c phase is observed in the microstructure in the as-cast condition, and it diminishes after severe cold rolling(90% reduction). After annealing at temperatures higher than 500 up to 750 ℃, the c phase is observed in the structure, again. But, this phase is disappeared by annealing at temperatures above 750 ℃ due to the formation of vanadium-rich precipitates. Thermocalc software was used in order to elucidate the influence of vanadium percent on the stability of c phase in Fe–Co alloys. Also, magnetic studies showed that the saturation induction is reduced by annealing at temperatures from 500 up to 750 ℃, which is related to the formation of residual non-magnetic γ phase.展开更多
DIN 1.2343 and 1.2367 steels are commonly used as die materials in aluminum extrusion, and single/duplex/multi-coatings enhance their surface properties. The design of an appropriate substrate/coating system is import...DIN 1.2343 and 1.2367 steels are commonly used as die materials in aluminum extrusion, and single/duplex/multi-coatings enhance their surface properties. The design of an appropriate substrate/coating system is important for improving the tribological performance of these steels under service conditions because the load-carrying capacity of the system can be increased by decreasing the plastic deformation of the substrate. In this study, the tribological behavior of CrN-coated Cr–Mo–V steels(DIN 1.2343, 1.2367, and 1.2999 grades) was investigated using different setups and tribological pairs at room and elevated temperatures. The aim of this study was to reveal the wear resistance of a suggested system(1.2999/CrN) not yet studied and to understand both the wear and the failure characteristics of coated systems. The results showed that(i) among the steels studied, the DIN 1.2999 grade steel exhibited the lowest friction coefficient because it had the highest load-carrying capacity as a result of secondary hardening at elevated temperatures;(ii) at room temperature, both abrasive tracks and adhesive layers were observed on the worn surfaces; and(iii) a combination of chemical reactions and progressive oxidation caused aluminum adhesion on the worn surface, and the detachment of droplets and microcracking were the characteristic damage mechanisms at high temperatures.展开更多
Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si subs...Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si substrates encounters three obstacles:mismatch defects,antiphase boundaries(APBs),and thermal cracks.We study the evolution of the structures on U-shaped trench-patterned Si(001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film.The results show that the formation of(111)-faceted hollow structures on patterned Si(001) substrates with trenches oriented along [110] direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers.The(111)-faceted silicon hollow structure can act as a promising platform for the direct growth of Ⅲ-Ⅴ materials for silicon based optoelectronic applications.展开更多
Microelectronic power converters such as buck and boost converter are required to be tolerant to radiations including electron radiation. This paper examines electron radiation effects on the Ⅰ-Ⅴ characteristics of ...Microelectronic power converters such as buck and boost converter are required to be tolerant to radiations including electron radiation. This paper examines electron radiation effects on the Ⅰ-Ⅴ characteristics of VDMOSFET and its corresponding effects in buck converter. Analysis of the electrical characteristics shows that after irradiation the threshold voltage and drain current for all VDMOSFETs degraded more than two orders of magnitude. The impact of this electrical degradation has been investigated in an application of typical buck converter circuit. The buck converter with n-channel switching transistor shows that after irradiation its output voltage increased with the drain current in the n-channel ZVN4424 A VDMOSFET, while the buck converter with p-channel switching transistor shows its output voltage decreased with the drain current in the p-channel ZVP4424 A VDMOSFET after irradiation.展开更多
A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potenti...A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.展开更多
The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-...The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.展开更多
Hafnium oxide films are deposited on Si(100)substrates by means of rf magnetron sputtering.The interfacial structure is studied using high-resolution transmission electron microscopy(HRTEM)and x-ray photoelectron spec...Hafnium oxide films are deposited on Si(100)substrates by means of rf magnetron sputtering.The interfacial structure is studied using high-resolution transmission electron microscopy(HRTEM)and x-ray photoelectron spectroscopy(XPS),and the electrical properties of the Au/HfO_(2)/Si stack are analyzed by frequency−dependent capacitance-voltage(C–V–f)measurements.The amorphous interfacial layer between HfO_(2) and the Si substrate is observed by the HRTEM method.From the results of XPS,the interfacial layer comprises hafnium silicate and silicon oxide.For C–V–f measurements,the C–V plots show a peak at a low frequency and the change in frequency has effects on the intensity of the peak.As expected,rapid thermal annealing can passivate the interface states of the HfO_(2)/Si stack.展开更多
Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the sol...Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.展开更多
A ferroelectric memory diode that consisted of Au/PZT/BIT/p-Si multilayer configuration was fabricated by pulsed laser deposition (PLD) technique. The reliability issues (I–V characteristics, capacitance retention, f...A ferroelectric memory diode that consisted of Au/PZT/BIT/p-Si multilayer configuration was fabricated by pulsed laser deposition (PLD) technique. The reliability issues (I–V characteristics, capacitance retention, fatigue and imprint) were investigated. The I–V curve showed the conventional Schottky diode characteristics with a small current density of ?5.3×10?10 A/cm2 at a voltage of ?4 V and 6.7×10?8 A/cm2 at a voltage of +4 V, and this characteristic can be maintained below 50°C. The capacitance variety of the ferroelectric diode was only 5% in 10 hours after withdrawing the applied bias of +5 V or ?5 V, indicating the diode had good capacitance retention. By applying 100 kHz bipolar pulses of 5 V amplitude, the decay in remanent polarization was only 10% after 109 switching cycles, and meanwhile the increase in coercive field was 12%. After being irradiated for 20 min with a 200 W ultraviolet ray lamp, the remanent polarization and coercive field had both varied, and a voltage shift was observed, but the figure of merit FOM was about 0.2 and the diode had no imprint invalidation.展开更多
Electron beam melting(EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications.Especially,lattice ...Electron beam melting(EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications.Especially,lattice structures made by Ti-6A1-4V have represented a hot topic for the industrial sectors because of having a great potential to combine lower weights and higher performances that can also be tailored by subsequent heat treatments.However,the little knowledge about the mechanical behaviour of the lattice structures is limiting their applications.The present work aims to provide a comprehensive review of the studies on the mechanical behaviour of the lattice structures made of Ti-6A1-4V.The main steps to produce an EBM part were considered as guidelines to review the literature on the lattice performance:(1) design,(2) process and(3) post-heat treatment.Thereafter,the correlation between the geometrical features of the lattice structure and their mechanical behaviour is discussed.In addition,the correlation among the mechanical performance of the lattice structures and the process precision,surface roughness and working temperature are also reviewed.An investigation on the studies about the properties of heat-treated lattice structure is also conducted.展开更多
文摘The ZrO2 thin films deposited on Si (100) were successfully synthesized by solgel process and deposited by using spin-coating technique.The structural properties of ZrO2 thin films were investigated by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and electrical properties were studied by conventional techniques like Capacitance-Voltage (C-V) measurement and Current–Voltage (I–V) measurement. The XRD of ZrO2 films shows the films crystallized and exists in two phases at 700℃ calcinations temperature. The C–V characteristics of all the dielectric films that involved distinct inversion, depletion, and accumulation were clearly revealed in MIS structure. I-V characteristics of ZrO2 thin films on Si shows decreased saturation current on calcinations temperatures. The XPS measurement reveals that a zirconium silicate interfacial layer has formed in the ZrO2/Si Systems.
基金supported in part by Australian Research Council (ARC) Discovery Project (No. DP170104426)
文摘This paper proposes a novel high-efficiency generation technique for photovoltaic(PV) system,named maximum power point capturing(MPPC) technique. This is an aperiodic perturbation MPPC technique compared to the conventional periodic perturbation maximum power point tracking technique. Firstly, under a closed-loop circuit and an open-loop circuit,the complete I-V curves and P-V curves are defined. Secondly, the proposed MPPC technique is based on the complete I-V curves and a practical model of solar PV systems.The proposed method realizes that maximum power point(MPP) is captured online, and its control strategy is designed to set a steady operating area around MPP. The duty cycle keeps constant when the operating point is within the steady operating area, i.e., aperiodic perturbation, and when the operating point is outside the steady operating area, MPPC is triggered to capture a new MPP with an updated steady operating area. Simulation results demonstrate that no oscillations exist in steady-state;dynamic performances are improved;and only two perturbations are required to capture the new MPP. Using the proposed MPPC method,low voltage ride through and high voltage ride through can be prevented.
文摘Tribological behavior of nanostructured pure Al and Al–Al12(Fe,V)3Si alloys containing 27(FVS0812) and 37(FVS1212) vol% of Al12(Fe,V)3Si precipitates was investigated. All samples were prepared using mechanical alloying followed by hot pressing. Wear tests were performed at room temperature using a pin-on-disk machine. Results showed that the presence of Al12(Fe,V)3Si precipitates increases the wear resistance of nanostructured Al, and the wear resistance increases with increasing the Al12(Fe,V)3Si content. Scanning electron microscopy images of worn surfaces and wear debris demonstrated that abrasion and adhesion are the governing wear mechanisms for the nanostructured FVS0812 alloy at 2 and 5 N normal loads, whereas for the nanostructured FVS1212 alloy, the dominant wear mechanism is abrasion at these loads. A mechanically mixed layer(MML) containing Fe and O was formed on the worn surfaces of FVS0812 and FVS1212 samples at 10 N normal load. Formation and delamination of MML controls the wear behavior of these samples at the normal load of 10 N. It is also found that the presence of Al12(Fe,V)3Si precipitates decreases the friction coefficient of nanostructured Al.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204049 and 51402366)Guangdong Natural Science Foundation,China(Grant No.S2012040007363)Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant Nos.2012LYM 0058 and2013LYM 0022)
文摘We report an effective enhancement in light extraction of Ga N-based light-emitting diodes(LEDs) with an Al-doped Zn O(AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent throughpore anodic aluminum oxide(AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 m A and 56% at 100 m A compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage.
基金support of the National High Technology Research and Development Program of China("863 Program",Grant No.21100002013101006)
文摘Selective laser melting was used to produce an aluminum alloy Al-8.5Fe-1.3V-1.7Si(wt%). The effects of heat treatment on microstructure evolution and phase stability during long-term thermal exposure of the deposits were investigated. Results show that the microquasi-crystalline phase, Al12(Fe,V)3Si and AlmF e metastable phases coexisted with α-Al in the as-produced alloy. Annealing at 400 ℃ resulted in decomposition of microquasi-crystalline phase and supersaturated α-Al into Al12(Fe, V)3Si phase in the fusion zone, accompanied by the decrease in alloy hardness. The activation energy of this decomposition process was 115 k J/mol. A more homogenous microstructure was obtained after annealing at 400 °C for 60 min,which was resistant to coarsening exposed at 425 °C up to 500 h. The Al12(Fe,V)3Si and AlmF e phases were coarsened at 475 and 525℃ with increasing the exposure time. Coarsening of Al12(Fe,V)3Si phase was attributed to a combination of volume diffusion and grain boundary diffusion mechanism of Fe. Heat treatment at 600℃ resulted in accelerated microstructure coarsening and formation of large-sized equilibrium phases, which signi?cantly degraded the room temperature microhardness.
基金Project supported by the Key Program of National Natural Science Foundation of China(Grant Nos.61334002 and 61634005)the National Natural Science Foundation of China(Grant Nos.61604114 and 61704124)
文摘In this paper, the interface states of the AlGaN/GaN metal–insulator–semiconductor(MIS) high electron mobility transistors(HEMTs) with an Al2 O3 gate dielectric are systematically evaluated. By frequency-dependent capacitance and conductance measurements, trap density and time constant at Al2 O3/AlGaN and AlGaN/GaN interface are determined.The experimental results reveal that the density of trap states and the activation energy at the Al2 O3/AlGaN interface are much higher than at the AlGaN/GaN interface. The photo-assisted capacitance-voltage measurements are performed to characterize the deep-level traps located near mid-gap at the Al2 O3/AlGaN interface, which indicates that a density of deep-level traps is lower than the density of the shallow-level states.
文摘Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential difference between the Fermi energy level and the bottom of the conduction bandapparent barrier heightseries resistanceand the interface state density Nss have been investigated.From the temperature dependence of(C–V)it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of Pt Si formation on semiconductor and the presence of hexagonal voids of Si(111).
基金the funding and support from the RUSA-Phase 2.0 grant sanctioned vide Letter. No. F. 24-51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India. Dt. 09.10.2018.
文摘The present work describes the effect of deposition potentials on structural,morphological,optical,electrical and photoconductivity responses of cuprous oxide(Cu2O)thin films deposited on fluorine-doped tin oxide glass substrate by employing electrodeposition technique.X-ray diffraction patterns reveal that the deposited films have a cubic structure grown along the preferential(111)growth orientation and crystallinity of the film deposited at.0.4 V is improved compared to the films deposited at.0.2,.0.3 and.0.5 V.Scanning electron microscopy displays that surface morphology of Cu2O film has a well-defined three-sided pyramid-shaped grains which are uniformly distributed over the surface of the substrates and are significantly changed as a function of deposition potential.Raman and photoluminescence spectra manifest that the film deposited at.0.4 V has a good crystal quality with higher acceptor concentration compared to other films.UV–visible analysis illustrates that the absorption of Cu2O thin film deposited at.0.4 V is notably higher compared to other films and the band gap of Cu2O thin films decreases from 2.1 to 2.04 eV with an increase in deposition potential from.0.2 to.0.5 V.The frequency–temperature dependence of impedance analysis shows that the film deposited at.0.4 V has a high conductivity.I– V measurements elucidate that the film deposited at.0.4 V exhibits a good photoconductivity response compared to films deposited in other deposition potentials.
文摘In this study, the allotropic phase transition and its effect on the magnetic behavior of Fe Co–7 wt%V alloy were investigated. It was found that c phase is observed in the microstructure in the as-cast condition, and it diminishes after severe cold rolling(90% reduction). After annealing at temperatures higher than 500 up to 750 ℃, the c phase is observed in the structure, again. But, this phase is disappeared by annealing at temperatures above 750 ℃ due to the formation of vanadium-rich precipitates. Thermocalc software was used in order to elucidate the influence of vanadium percent on the stability of c phase in Fe–Co alloys. Also, magnetic studies showed that the saturation induction is reduced by annealing at temperatures from 500 up to 750 ℃, which is related to the formation of residual non-magnetic γ phase.
文摘DIN 1.2343 and 1.2367 steels are commonly used as die materials in aluminum extrusion, and single/duplex/multi-coatings enhance their surface properties. The design of an appropriate substrate/coating system is important for improving the tribological performance of these steels under service conditions because the load-carrying capacity of the system can be increased by decreasing the plastic deformation of the substrate. In this study, the tribological behavior of CrN-coated Cr–Mo–V steels(DIN 1.2343, 1.2367, and 1.2999 grades) was investigated using different setups and tribological pairs at room and elevated temperatures. The aim of this study was to reveal the wear resistance of a suggested system(1.2999/CrN) not yet studied and to understand both the wear and the failure characteristics of coated systems. The results showed that(i) among the steels studied, the DIN 1.2999 grade steel exhibited the lowest friction coefficient because it had the highest load-carrying capacity as a result of secondary hardening at elevated temperatures;(ii) at room temperature, both abrasive tracks and adhesive layers were observed on the worn surfaces; and(iii) a combination of chemical reactions and progressive oxidation caused aluminum adhesion on the worn surface, and the detachment of droplets and microcracking were the characteristic damage mechanisms at high temperatures.
基金the National Natural Science Foundation of China under Grant Nos.61635011,61975230,61804177,11434041 and 11574356the National Key Research and Development Program of China(2016YFA0300600 and 2016YFA0301700)+1 种基金the Key Research Program of Frontier Sciences,CAS(No.QYZDB-SSW-JSC009)Ting Wang is supported by the Youth Innovation Promotion Association of CAS(No.2018011).
文摘Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si substrates encounters three obstacles:mismatch defects,antiphase boundaries(APBs),and thermal cracks.We study the evolution of the structures on U-shaped trench-patterned Si(001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film.The results show that the formation of(111)-faceted hollow structures on patterned Si(001) substrates with trenches oriented along [110] direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers.The(111)-faceted silicon hollow structure can act as a promising platform for the direct growth of Ⅲ-Ⅴ materials for silicon based optoelectronic applications.
基金funded by International Islamic University Malaysia(No.EDW B14-159-1044)
文摘Microelectronic power converters such as buck and boost converter are required to be tolerant to radiations including electron radiation. This paper examines electron radiation effects on the Ⅰ-Ⅴ characteristics of VDMOSFET and its corresponding effects in buck converter. Analysis of the electrical characteristics shows that after irradiation the threshold voltage and drain current for all VDMOSFETs degraded more than two orders of magnitude. The impact of this electrical degradation has been investigated in an application of typical buck converter circuit. The buck converter with n-channel switching transistor shows that after irradiation its output voltage increased with the drain current in the n-channel ZVN4424 A VDMOSFET, while the buck converter with p-channel switching transistor shows its output voltage decreased with the drain current in the p-channel ZVP4424 A VDMOSFET after irradiation.
文摘A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.
基金supported by the Algerian Ministry of High Education and Scientific Research through the CNEPRU project No.B00L02UN310220130011,www.mesrs.dz,and www.univ-usto.dzincluded in ANVREDET PROJECT N° 18/DG/2016 “projet innovant:synthèse et caractérisation de films semiconducteurs nanostructurés et fabrication de cellule solaire” 2016,http://www.anvredet.org.dz
文摘The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.
基金by the Northwestern Polytechnical University(NPU)Foundation for Fundamental Research under Grant No JC201111the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)under Grant No 58-TZ-2011,and the 111 Project under Grant No B08040.
文摘Hafnium oxide films are deposited on Si(100)substrates by means of rf magnetron sputtering.The interfacial structure is studied using high-resolution transmission electron microscopy(HRTEM)and x-ray photoelectron spectroscopy(XPS),and the electrical properties of the Au/HfO_(2)/Si stack are analyzed by frequency−dependent capacitance-voltage(C–V–f)measurements.The amorphous interfacial layer between HfO_(2) and the Si substrate is observed by the HRTEM method.From the results of XPS,the interfacial layer comprises hafnium silicate and silicon oxide.For C–V–f measurements,the C–V plots show a peak at a low frequency and the change in frequency has effects on the intensity of the peak.As expected,rapid thermal annealing can passivate the interface states of the HfO_(2)/Si stack.
基金Project supported by the Science and Technology Research Project of Hebei Province Colleges and Universities (Grant No. QN2020113)Tangshan Applied Basic Research Project (Grant No. 19130227g)。
文摘Amorphous–microcrystalline MoS_(2)thin films are fabricated using the sol-gel method to produce MoS_(2)/Si-based solar cells. The generation mechanisms of the S-shaped current density–voltage(J–V) curves of the solar cells are analyzed. To improve the performance of the solar cells and address the problem of the S-shaped J–V curve, a MoS_(2)film and a p^(+) layer are introduced into the front and back interfaces of the solar cell, respectively, which leads to the formation of a p–n junction between the p-Si and the MoS_(2)film as well as ohmic contacts between the MoS_(2)film and the ITO, improving the S-shaped J–V curve. As a result of the high doping characteristics and the high work function of the p^(+) layer, a high–low junction is formed between the p;and p layers along with ohmic contacts between the p;layer and the Ag electrode. Consequently,the S-shaped J–V curve is eliminated, and a significantly higher current density is achieved at a high voltage. The device exhibits ideal p–n junction rectification characteristics and achieves a high power-conversion efficiency(CE) of 7.55%. The findings of this study may improve the application of MoS_(2)thin films in silicon-based solar cells, which are expected to be widely used in various silicon-based electronic and optical devices.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69771024) and the Natural Science Foundation of Hubei Province (Grant No. 98J036) .
文摘A ferroelectric memory diode that consisted of Au/PZT/BIT/p-Si multilayer configuration was fabricated by pulsed laser deposition (PLD) technique. The reliability issues (I–V characteristics, capacitance retention, fatigue and imprint) were investigated. The I–V curve showed the conventional Schottky diode characteristics with a small current density of ?5.3×10?10 A/cm2 at a voltage of ?4 V and 6.7×10?8 A/cm2 at a voltage of +4 V, and this characteristic can be maintained below 50°C. The capacitance variety of the ferroelectric diode was only 5% in 10 hours after withdrawing the applied bias of +5 V or ?5 V, indicating the diode had good capacitance retention. By applying 100 kHz bipolar pulses of 5 V amplitude, the decay in remanent polarization was only 10% after 109 switching cycles, and meanwhile the increase in coercive field was 12%. After being irradiated for 20 min with a 200 W ultraviolet ray lamp, the remanent polarization and coercive field had both varied, and a voltage shift was observed, but the figure of merit FOM was about 0.2 and the diode had no imprint invalidation.
文摘Electron beam melting(EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications.Especially,lattice structures made by Ti-6A1-4V have represented a hot topic for the industrial sectors because of having a great potential to combine lower weights and higher performances that can also be tailored by subsequent heat treatments.However,the little knowledge about the mechanical behaviour of the lattice structures is limiting their applications.The present work aims to provide a comprehensive review of the studies on the mechanical behaviour of the lattice structures made of Ti-6A1-4V.The main steps to produce an EBM part were considered as guidelines to review the literature on the lattice performance:(1) design,(2) process and(3) post-heat treatment.Thereafter,the correlation between the geometrical features of the lattice structure and their mechanical behaviour is discussed.In addition,the correlation among the mechanical performance of the lattice structures and the process precision,surface roughness and working temperature are also reviewed.An investigation on the studies about the properties of heat-treated lattice structure is also conducted.