In this paper the relation between the σ-images of metrical spaces and spaces with σ-locally finite cs-network, or spaces with σ-locally finite cs^*-network, or spaces with σ-locally finite sequence neighborhood n...In this paper the relation between the σ-images of metrical spaces and spaces with σ-locally finite cs-network, or spaces with σ-locally finite cs^*-network, or spaces with σ-locally finite sequence neighborhood network, or spaces with σ-locally finite sequence open network are established by use of σ-mapping.展开更多
令(R N M S)是一个具有零迹理想的形式矩阵环,σ是K的一个满足σ(E_(11))=E_(11),σ(E_(22))=E_(22)的自同构.本文确定了K的σ-双导子和σ-交换映射的一般形式,证明了在一定条件下K的每个σ-双导子都可以表示成一个外σ-双导子与一个内...令(R N M S)是一个具有零迹理想的形式矩阵环,σ是K的一个满足σ(E_(11))=E_(11),σ(E_(22))=E_(22)的自同构.本文确定了K的σ-双导子和σ-交换映射的一般形式,证明了在一定条件下K的每个σ-双导子都可以表示成一个外σ-双导子与一个内σ-双导子的和.此外,本文给出了K的任意σ-双导子(σ-交换映射)是内σ-双导子(真σ-交换映射)的一个充分条件.展开更多
基金Supported by Financial Aid Program of the Young Core Teacher of Higher Institution of Henan Province(2003100)
文摘In this paper the relation between the σ-images of metrical spaces and spaces with σ-locally finite cs-network, or spaces with σ-locally finite cs^*-network, or spaces with σ-locally finite sequence neighborhood network, or spaces with σ-locally finite sequence open network are established by use of σ-mapping.
基金Supported by NSFC (Nos.11661014,11661013,11961050)Guangxi Natural Science Foundation (No.2016GXSFDA380017)。
文摘令(R N M S)是一个具有零迹理想的形式矩阵环,σ是K的一个满足σ(E_(11))=E_(11),σ(E_(22))=E_(22)的自同构.本文确定了K的σ-双导子和σ-交换映射的一般形式,证明了在一定条件下K的每个σ-双导子都可以表示成一个外σ-双导子与一个内σ-双导子的和.此外,本文给出了K的任意σ-双导子(σ-交换映射)是内σ-双导子(真σ-交换映射)的一个充分条件.