The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots(SQDs) to raise the growth repeatability.Here,through many growth tests on rotating substrates,we...The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots(SQDs) to raise the growth repeatability.Here,through many growth tests on rotating substrates,we develop a proper In deposition amount(θ) for SQD growth,according to the measured critical θ for test QD nucleation(θ;).The proper ratio θ/θ;,with a large tolerance of the variation of the real substrate temperature(T;),is 0.964-0.971 at the edge and> 0.989 but < 0.996 in the center of a 1/4-piece semi-insulating wafer,and around 0.9709 but < 0.9714 in the center of a 1/4-piece N;wafer as shown in the evolution of QD size and density as θ/θ;varies.Bright SQDs with spectral lines at 905 nm-935 nm nucleate at the edge and correlate with individual 7 nm-8 nm-height QDs in atomic force microscopy,among dense 1 nm-5 nm-height small QDs with a strong spectral profile around 860 nm-880 nm.The higher T;in the center forms diluter,taller and uniform QDs,and very dilute SQDs for a proper θ/θ;:only one 7-nm-height SQD in25 μm;.On a 2-inch(1 inch = 2.54 cm) semi-insulating wafer,by using θ/θ;= 0.961,SQDs nucleate in a circle in 22%of the whole area.More SQDs will form in the broad high-T;region in the center by using a proper θ/θ;.展开更多
基金supported by the National Key Basic Research Program of China(Grant No.2013CB933304)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01010200)the National Natural Science Foundation of China(Grant No.65015196)
文摘The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots(SQDs) to raise the growth repeatability.Here,through many growth tests on rotating substrates,we develop a proper In deposition amount(θ) for SQD growth,according to the measured critical θ for test QD nucleation(θ;).The proper ratio θ/θ;,with a large tolerance of the variation of the real substrate temperature(T;),is 0.964-0.971 at the edge and> 0.989 but < 0.996 in the center of a 1/4-piece semi-insulating wafer,and around 0.9709 but < 0.9714 in the center of a 1/4-piece N;wafer as shown in the evolution of QD size and density as θ/θ;varies.Bright SQDs with spectral lines at 905 nm-935 nm nucleate at the edge and correlate with individual 7 nm-8 nm-height QDs in atomic force microscopy,among dense 1 nm-5 nm-height small QDs with a strong spectral profile around 860 nm-880 nm.The higher T;in the center forms diluter,taller and uniform QDs,and very dilute SQDs for a proper θ/θ;:only one 7-nm-height SQD in25 μm;.On a 2-inch(1 inch = 2.54 cm) semi-insulating wafer,by using θ/θ;= 0.961,SQDs nucleate in a circle in 22%of the whole area.More SQDs will form in the broad high-T;region in the center by using a proper θ/θ;.