In this work,we have successfully grown high quality epitaxialβ-Ga_(2)O_(3)thin films onβ-Ga_(2)O_(3)(100)and Al_(2)O_(3)(0001)substrates using pulsed laser deposition(PLD).By optimizing temperature and oxygen press...In this work,we have successfully grown high quality epitaxialβ-Ga_(2)O_(3)thin films onβ-Ga_(2)O_(3)(100)and Al_(2)O_(3)(0001)substrates using pulsed laser deposition(PLD).By optimizing temperature and oxygen pressure,the best conditions were found to be 650-700℃and 0.5 Pa.To further improve the quality of hetero-epitaxialβ-Ga_(2)O_(3),the sapphire substrates were pretreated for atomic terraced surface by chemical cleaning and high temperature annealing.From the optical transmittance measurements,the films grown at 600-750℃exhibit a clear absorption edge at deep ultraviolet region around 250-275 nm wavelength.High resolution transmission electron microscope(HRTEM)images and X-ray diffraction(XRD)patterns demonstrate thatβ-Ga_(2)O_(3)(-201)//Al_(2)O_(3)(0001)epitaxial texture dominated the epitaxial oxide films on sapphire substrate,which opens up the possibilities of high power electric devices.展开更多
We investigated the influence of the growth temperature, O_(2) flow, molar ratio between Ga_(2)O_(3) powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire(0001) substrat...We investigated the influence of the growth temperature, O_(2) flow, molar ratio between Ga_(2)O_(3) powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire(0001) substrates by a carbothermal reduction method. Experimental results for the heteroepitaxial growth of β-Ga_(2)O_(3) illustrate that β-Ga_(2)O_(3) growth by the carbothermal reduction method can be controlled. The optimal result was obtained at a growth temperature of 1050 °C. The fastest growth rate of β-Ga_(2)O_(3) films was produced when the O_(2) flow was 20 sccm. To guarantee that β-Ga_(2)O_(3) films with both high-quality crystal and morphology properties, the ideal molar ratio between graphite powder and Ga_(2)O_(3) powder should be set at 10 : 1.展开更多
基金the National Natural Science Foundation of China(61674165,61604167,61574160,61704183,61404159,11604366)the Natural Science Foundation of Jiangsu Province(BK20170432,BK20160397,BK20140394)+2 种基金the National Key R&D Program of China(2016YFB0401803)the Strategic Priority Research Program of the Chinese Academy of Science(XDA09020401)XRD,AFM and TEM experiments were performed at the Platform for Characterization&Test,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences.
文摘In this work,we have successfully grown high quality epitaxialβ-Ga_(2)O_(3)thin films onβ-Ga_(2)O_(3)(100)and Al_(2)O_(3)(0001)substrates using pulsed laser deposition(PLD).By optimizing temperature and oxygen pressure,the best conditions were found to be 650-700℃and 0.5 Pa.To further improve the quality of hetero-epitaxialβ-Ga_(2)O_(3),the sapphire substrates were pretreated for atomic terraced surface by chemical cleaning and high temperature annealing.From the optical transmittance measurements,the films grown at 600-750℃exhibit a clear absorption edge at deep ultraviolet region around 250-275 nm wavelength.High resolution transmission electron microscope(HRTEM)images and X-ray diffraction(XRD)patterns demonstrate thatβ-Ga_(2)O_(3)(-201)//Al_(2)O_(3)(0001)epitaxial texture dominated the epitaxial oxide films on sapphire substrate,which opens up the possibilities of high power electric devices.
基金supported by the National Natural Science Foundation of China under Grant 62104024, Grant 11875097, Grant 12075045, Grant 11975257, Grant 11961141014, and Grant 62074146the Fundamental Research Funds for the Central Universities under Grant DUT19RC (3)074the Natural Science Foundation of Liaoning Province under Grant 2021MS124, Grant 2022020474JH2/1013。
文摘We investigated the influence of the growth temperature, O_(2) flow, molar ratio between Ga_(2)O_(3) powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire(0001) substrates by a carbothermal reduction method. Experimental results for the heteroepitaxial growth of β-Ga_(2)O_(3) illustrate that β-Ga_(2)O_(3) growth by the carbothermal reduction method can be controlled. The optimal result was obtained at a growth temperature of 1050 °C. The fastest growth rate of β-Ga_(2)O_(3) films was produced when the O_(2) flow was 20 sccm. To guarantee that β-Ga_(2)O_(3) films with both high-quality crystal and morphology properties, the ideal molar ratio between graphite powder and Ga_(2)O_(3) powder should be set at 10 : 1.