Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was sign...Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was significantly improved because of covalent bonds in the interfaces between the film and substrate,while only weak Van der Waals bonds existed at the interfaces within the particle-assembledβ-Fe_(2)O_(3)film prepared by electrophoretic deposition.The as-prepared planar films were thus able to withstand higher annealing temperature and stronger laser irradiation power in comparison with theβ-Fe_(2)O_(3)particle-assembly.Ti^(4+)doping was used to increase the concentration of carriers in the metastableβ-Fe_(2)O_(3)film.Compared with pureβ-Fe_(2)O_(3)photoanodes,the highest saturated photocurrent for water splitting over the Ti^(4+)-dopedβ-Fe_(2)O_(3)photoanode was increased by a factor of approximately three.Theβ-Fe_(2)O_(3)photoanode exhibited photochemical stability for water splitting for a duration exceeding 100 h,which indicates its important potential application in solar energy conversion.展开更多
β-Fe2O3·H2O is prepared by reacting FeCl3, K2CO3, an oxidizing agent HIO4 and a metal chelating agent K3PO4 at 65~ 70℃. The prepared β-Fe2O3' H2O is introduced into the mixture of KOH, KOCl and a ferrate s...β-Fe2O3·H2O is prepared by reacting FeCl3, K2CO3, an oxidizing agent HIO4 and a metal chelating agent K3PO4 at 65~ 70℃. The prepared β-Fe2O3' H2O is introduced into the mixture of KOH, KOCl and a ferrate stabilizer KI, and reacted at room temperature for 5 h to produce a ferrate-containing cake. The cake is dried to give a water-free dried potassium ferrate (VI).展开更多
研究了在简单或复杂的Al Si系合金中常常出现力学性能偏低甚至产生裂纹的原因,以及在上述合金中适当加入镍的效果及机理。试验和生产实践表明,在Al Si系合金中加入少量镍,可使针状的β(Al Fe Si)脆性相变异,形成新生相,改善了材料的力...研究了在简单或复杂的Al Si系合金中常常出现力学性能偏低甚至产生裂纹的原因,以及在上述合金中适当加入镍的效果及机理。试验和生产实践表明,在Al Si系合金中加入少量镍,可使针状的β(Al Fe Si)脆性相变异,形成新生相,改善了材料的力学性能,提高了零件的使用寿命。同时,分析了新生相的成分,为相的鉴别提供了依据。展开更多
文摘Planar films of pure and Ti^(4+)-dopedβ-Fe_(2)O_(3)were prepared by a spray pyrolysis method.X-ray diffraction patterns and Raman spectra of the metastableβ-Fe_(2)O_(3)film showed that its thermal stability was significantly improved because of covalent bonds in the interfaces between the film and substrate,while only weak Van der Waals bonds existed at the interfaces within the particle-assembledβ-Fe_(2)O_(3)film prepared by electrophoretic deposition.The as-prepared planar films were thus able to withstand higher annealing temperature and stronger laser irradiation power in comparison with theβ-Fe_(2)O_(3)particle-assembly.Ti^(4+)doping was used to increase the concentration of carriers in the metastableβ-Fe_(2)O_(3)film.Compared with pureβ-Fe_(2)O_(3)photoanodes,the highest saturated photocurrent for water splitting over the Ti^(4+)-dopedβ-Fe_(2)O_(3)photoanode was increased by a factor of approximately three.Theβ-Fe_(2)O_(3)photoanode exhibited photochemical stability for water splitting for a duration exceeding 100 h,which indicates its important potential application in solar energy conversion.
文摘β-Fe2O3·H2O is prepared by reacting FeCl3, K2CO3, an oxidizing agent HIO4 and a metal chelating agent K3PO4 at 65~ 70℃. The prepared β-Fe2O3' H2O is introduced into the mixture of KOH, KOCl and a ferrate stabilizer KI, and reacted at room temperature for 5 h to produce a ferrate-containing cake. The cake is dried to give a water-free dried potassium ferrate (VI).
文摘研究了在简单或复杂的Al Si系合金中常常出现力学性能偏低甚至产生裂纹的原因,以及在上述合金中适当加入镍的效果及机理。试验和生产实践表明,在Al Si系合金中加入少量镍,可使针状的β(Al Fe Si)脆性相变异,形成新生相,改善了材料的力学性能,提高了零件的使用寿命。同时,分析了新生相的成分,为相的鉴别提供了依据。