A copper matrix composite reinforced by β-LiAlSiO4 with negative thermal expansion coefficient was fabricated using vacuum hot-pressed sintering technique. The thermal expansion behavior of the composite was investig...A copper matrix composite reinforced by β-LiAlSiO4 with negative thermal expansion coefficient was fabricated using vacuum hot-pressed sintering technique. The thermal expansion behavior of the composite was investigated, and the average residual stress in the matrix was analyzed by a simple model. The results indicate that the residual stress in the matrix affects the thermal expansion properties. After heat treatment, the coefficient of thermal expansion (CTE) of the composite decreases greatly. The CTE of the composite after thermal cycling between 50-350°C is the lowest.展开更多
β-eucryptite powders are prepared by the sol-gel method through using tetraethoxysilane lithium nitrate and aluminum isopropoxide as starting materials. β-eucryptite ceramics are prepared by spark plasma sintering. ...β-eucryptite powders are prepared by the sol-gel method through using tetraethoxysilane lithium nitrate and aluminum isopropoxide as starting materials. β-eucryptite ceramics are prepared by spark plasma sintering. The effects of sintering temperature on the negative thermal expansion properties of the β-eucryptite are investigated by x-ray diffraction(XRD), scanning electron microscopy, and thermal expansion test. The XRD results exhibit no change in the crystal structure of the sample prepared by different sintering processes. The negative thermal expansion properties increase with the increase of the sintering temperature. The coefficient of thermal expansion of β-eucryptite ceramics sintered at 1100℃ is calculated to be -4.93 × 10^(-6)℃^(-1). Crystallization behaviors of the ceramics may play an important role in the increase of negative thermal expansion of β-eucryptite. High sintering temperature could improve the crystallization behaviors of the ceramics and reduce the residue glass phase, which can improve the negative thermal expansion properties of β-eucryptite ceramics.展开更多
热膨胀系数是材料的重要参数之一,自然界中,绝大多数物质都具有较高的热膨胀系数,热胀冷缩的情况较为严重,因此,这类物质通常具有较差的抗热冲击性,不能在温度变化巨大的环境下使用。如不均匀的温度分布和大的温度变化会引起航空航天器...热膨胀系数是材料的重要参数之一,自然界中,绝大多数物质都具有较高的热膨胀系数,热胀冷缩的情况较为严重,因此,这类物质通常具有较差的抗热冲击性,不能在温度变化巨大的环境下使用。如不均匀的温度分布和大的温度变化会引起航空航天器件结构破坏和电子设备的几何热变形,从而造成信号失真。然而自然界中,也存在少数具有负热膨胀系数的物质。这类材料的体积会随着温度的升高而减小。利用热膨胀系数的加和性,可将具有低热膨胀系数或负热膨胀系数的材料与高热膨胀系数的材料复合,得到热膨胀系数可调的复合材料,可显著提高其抗热震性。负热膨胀材料分为各向同性负热膨胀材料和各向异性负热膨胀材料。各向同性负热膨胀材料主要是ZrV 2-x P x O 7和ZrW 2O 8系列,各向异性负热膨胀材料主要包括β-锂霞石、钙钛矿系列、A 2M 3O 12系列、M(CN)2(M=Zn,Cd)系列、氧化物、沸石系列和金属有机框架结构材料(MOFs)等。其中,β-锂霞石因其具有较大的负热膨胀系数(α=-6.1×10-6 K-1)、较低的密度(2.67 g/cm 3)、良好的抗热震性、介电性能及红外辐射,常被用作调节复合材料热膨胀系数的材料。β-锂霞石可与其他材料复合,制备出具有负热膨胀或接近“零膨胀”的复合材料,极大地提高材料的抗热震性和尺寸稳定性,进而提高材料的使用寿命。因此,β-锂霞石常被用来制备一些低膨胀陶瓷、微晶玻璃、金属基等复合材料,用于电气设备、电子元件、导弹天线罩涂层材料、激光陀螺仪和天文望远镜等领域。同时,由于β-锂霞石的各向异性热膨胀特性,复合材料中存在较多的残余应力从而使其机械强度下降。为了解决这个问题,可在复合材料中继续引入机械强度较高的纤维或晶须来提高其机械强度,形成三相复合的低膨胀、高机械强度的复合材料。这将进一步拓展此�展开更多
基金supported by the National Natural Science Foundation of China (No. 50671029).
文摘A copper matrix composite reinforced by β-LiAlSiO4 with negative thermal expansion coefficient was fabricated using vacuum hot-pressed sintering technique. The thermal expansion behavior of the composite was investigated, and the average residual stress in the matrix was analyzed by a simple model. The results indicate that the residual stress in the matrix affects the thermal expansion properties. After heat treatment, the coefficient of thermal expansion (CTE) of the composite decreases greatly. The CTE of the composite after thermal cycling between 50-350°C is the lowest.
基金Project supported by the Programs for Tackling Key Problems in Science and Technology,Henan Province,China(Grant Nos.172102210103,182102310895,182102210031,and 182102311079)the Doctoral Program of Henan Institute of Engineering,China(Grant Nos.D2016015 and D2016016)the Nationallevel College Students Innovative Entrepreneurial Training Plan Program,China(Grant No.201611517041)
文摘β-eucryptite powders are prepared by the sol-gel method through using tetraethoxysilane lithium nitrate and aluminum isopropoxide as starting materials. β-eucryptite ceramics are prepared by spark plasma sintering. The effects of sintering temperature on the negative thermal expansion properties of the β-eucryptite are investigated by x-ray diffraction(XRD), scanning electron microscopy, and thermal expansion test. The XRD results exhibit no change in the crystal structure of the sample prepared by different sintering processes. The negative thermal expansion properties increase with the increase of the sintering temperature. The coefficient of thermal expansion of β-eucryptite ceramics sintered at 1100℃ is calculated to be -4.93 × 10^(-6)℃^(-1). Crystallization behaviors of the ceramics may play an important role in the increase of negative thermal expansion of β-eucryptite. High sintering temperature could improve the crystallization behaviors of the ceramics and reduce the residue glass phase, which can improve the negative thermal expansion properties of β-eucryptite ceramics.
文摘热膨胀系数是材料的重要参数之一,自然界中,绝大多数物质都具有较高的热膨胀系数,热胀冷缩的情况较为严重,因此,这类物质通常具有较差的抗热冲击性,不能在温度变化巨大的环境下使用。如不均匀的温度分布和大的温度变化会引起航空航天器件结构破坏和电子设备的几何热变形,从而造成信号失真。然而自然界中,也存在少数具有负热膨胀系数的物质。这类材料的体积会随着温度的升高而减小。利用热膨胀系数的加和性,可将具有低热膨胀系数或负热膨胀系数的材料与高热膨胀系数的材料复合,得到热膨胀系数可调的复合材料,可显著提高其抗热震性。负热膨胀材料分为各向同性负热膨胀材料和各向异性负热膨胀材料。各向同性负热膨胀材料主要是ZrV 2-x P x O 7和ZrW 2O 8系列,各向异性负热膨胀材料主要包括β-锂霞石、钙钛矿系列、A 2M 3O 12系列、M(CN)2(M=Zn,Cd)系列、氧化物、沸石系列和金属有机框架结构材料(MOFs)等。其中,β-锂霞石因其具有较大的负热膨胀系数(α=-6.1×10-6 K-1)、较低的密度(2.67 g/cm 3)、良好的抗热震性、介电性能及红外辐射,常被用作调节复合材料热膨胀系数的材料。β-锂霞石可与其他材料复合,制备出具有负热膨胀或接近“零膨胀”的复合材料,极大地提高材料的抗热震性和尺寸稳定性,进而提高材料的使用寿命。因此,β-锂霞石常被用来制备一些低膨胀陶瓷、微晶玻璃、金属基等复合材料,用于电气设备、电子元件、导弹天线罩涂层材料、激光陀螺仪和天文望远镜等领域。同时,由于β-锂霞石的各向异性热膨胀特性,复合材料中存在较多的残余应力从而使其机械强度下降。为了解决这个问题,可在复合材料中继续引入机械强度较高的纤维或晶须来提高其机械强度,形成三相复合的低膨胀、高机械强度的复合材料。这将进一步拓展此�
基金National Natural Science Foundation of China(52262008)Jiangxi Provincial Natural Science Foundation(20212BAB204035)+1 种基金Key Research Base of Humanities and Social Sciences in Universities of Jiangxi Province(JD21082)Key Research and Development Project of Jiangxi Province(20224BBE51050)。
基金Projects(50671029,50801016)supported by the National Natural Science Foundation of ChinaProject(2011CB612200)supported by the National Basic Research Program of ChinaProject(2011RFXXG025)supported by the Harbin Science and Technology Research Funds for Innovation Talents