In this paper, we find some solutions to a system of partial differential equations that characterize the projectively flat Finsler metrics. Further, we discover that some of these metrics actually have the zero flag ...In this paper, we find some solutions to a system of partial differential equations that characterize the projectively flat Finsler metrics. Further, we discover that some of these metrics actually have the zero flag curvature.展开更多
In this paper, we discuss a class of Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We characterize weak Landsberg metrics in this class and show that there exist weak Landsberg metrics whi...In this paper, we discuss a class of Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We characterize weak Landsberg metrics in this class and show that there exist weak Landsberg metrics which are not Landsberg metrics in dimension greater than two.展开更多
Abstract In this article, the author studies the projectively flat Matsumoto metric F=α^2/(α -β), where α=√αijy^iy^j is a Riemannian metric and β =biy^i is 1-form. Theyconclude that α is locally projectively...Abstract In this article, the author studies the projectively flat Matsumoto metric F=α^2/(α -β), where α=√αijy^iy^j is a Riemannian metric and β =biy^i is 1-form. Theyconclude that α is locally projectively fiat and β is paralled with respect to α. And get the same result for the higher order approximate Matsumoto metric.展开更多
There is a long existing "unicorn" problem in Finsler geometry: whether or not any Landsberg metric is a Berwald metric? Some classes of metrics were studied in the past and no regular non-Berwaldian Landsbe...There is a long existing "unicorn" problem in Finsler geometry: whether or not any Landsberg metric is a Berwald metric? Some classes of metrics were studied in the past and no regular non-Berwaldian Landsberg metric was found. However, if the metric is almost regular(allowed to be singular in some directions),some non-Berwaldian Landsberg metrics were found in the past years. All of them are composed by Riemannian metrics and 1-forms. This motivates us to ?nd more almost regular non-Berwaldian Landsberg metrics in the class of general(α, β)-metrics. In this paper, we ?rst classify almost regular Landsberg general(α, β)-metrics into three cases and prove that those regular metrics must be Berwald metrics. By solving some nonlinear PDEs,some new almost regular Landsberg metrics are constructed which have not been described before.展开更多
In this paper, we study (α,β)-metrics of scalar flag curvature on a manifold M of dimension n (n 〉 3). Suppose that an (α,β)-metric F is not a Finsler metric of Randers type, that is, F ≠k1 V√α^2 + k2β...In this paper, we study (α,β)-metrics of scalar flag curvature on a manifold M of dimension n (n 〉 3). Suppose that an (α,β)-metric F is not a Finsler metric of Randers type, that is, F ≠k1 V√α^2 + k2β^2 + k3β, where k1 〉 0, k2 and k3 are scalar functions on M. We prove that F is of scalar flag curvature and of vanishing S-curvature if metric. In this case, F is a locally Minkowski and only if the flag curvature K = 0 and F is a Berwald metric.展开更多
In this article, we study a class of Finsler metrics called general (α, β)-metrics, which are defined by a Riemannian metric α and a 1-form β. We determine all of Douglas general (α, β)-metrics on a manifold...In this article, we study a class of Finsler metrics called general (α, β)-metrics, which are defined by a Riemannian metric α and a 1-form β. We determine all of Douglas general (α, β)-metrics on a manifold of dimension n 〉 2.展开更多
We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics o...We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on S^3 with Ric = 2F^2, Ric = 0 and Ric =-2F^2, respectively. This family of metrics provides an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.展开更多
In this paper, we study the (α,β)-metrics of scalar flag curvature in the form of F = α + εβ + κβ^2/α (ε and k ≠ 0 are constants) and F = α^2/α-β. We prove that these two kinds of metrics are weak...In this paper, we study the (α,β)-metrics of scalar flag curvature in the form of F = α + εβ + κβ^2/α (ε and k ≠ 0 are constants) and F = α^2/α-β. We prove that these two kinds of metrics are weak Berwaldian if and only if they are Berwaldian and their flag curvatures vanish. In this case, the metrics are locally Minkowskian.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10371138&10471001).
文摘In this paper, we find some solutions to a system of partial differential equations that characterize the projectively flat Finsler metrics. Further, we discover that some of these metrics actually have the zero flag curvature.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 10571154 and 10671214) and the Natural Science Foundation on IR/D
文摘In this paper, we discuss a class of Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We characterize weak Landsberg metrics in this class and show that there exist weak Landsberg metrics which are not Landsberg metrics in dimension greater than two.
文摘Abstract In this article, the author studies the projectively flat Matsumoto metric F=α^2/(α -β), where α=√αijy^iy^j is a Riemannian metric and β =biy^i is 1-form. Theyconclude that α is locally projectively fiat and β is paralled with respect to α. And get the same result for the higher order approximate Matsumoto metric.
基金supported by Zhejiang Provincial Natural Science Foundation of China (ZPNSFC) (Grant No. R18A010002)National Natural Science Foundation of China (Grant No. 11371209)K.C. Wong Magna Fund in Ningbo University
文摘There is a long existing "unicorn" problem in Finsler geometry: whether or not any Landsberg metric is a Berwald metric? Some classes of metrics were studied in the past and no regular non-Berwaldian Landsberg metric was found. However, if the metric is almost regular(allowed to be singular in some directions),some non-Berwaldian Landsberg metrics were found in the past years. All of them are composed by Riemannian metrics and 1-forms. This motivates us to ?nd more almost regular non-Berwaldian Landsberg metrics in the class of general(α, β)-metrics. In this paper, we ?rst classify almost regular Landsberg general(α, β)-metrics into three cases and prove that those regular metrics must be Berwald metrics. By solving some nonlinear PDEs,some new almost regular Landsberg metrics are constructed which have not been described before.
基金Supported by National Natural Science Foundation of China (Grant No. 10971239)
文摘In this paper, we study (α,β)-metrics of scalar flag curvature on a manifold M of dimension n (n 〉 3). Suppose that an (α,β)-metric F is not a Finsler metric of Randers type, that is, F ≠k1 V√α^2 + k2β^2 + k3β, where k1 〉 0, k2 and k3 are scalar functions on M. We prove that F is of scalar flag curvature and of vanishing S-curvature if metric. In this case, F is a locally Minkowski and only if the flag curvature K = 0 and F is a Berwald metric.
基金supported by the National Natural Science Foundation of China(11626091)Youth Science Fund of Henan Normal University(2015QK01)a doctoral scientific research foundation of Henan Normal University(5101019170130)
文摘In this article, we study a class of Finsler metrics called general (α, β)-metrics, which are defined by a Riemannian metric α and a 1-form β. We determine all of Douglas general (α, β)-metrics on a manifold of dimension n 〉 2.
基金supported by National Natural Science Foundation of China (Grant No. 11371386)the European Union’s Seventh Framework Programme (FP7/2007–2013) (Grant No. 317721)National Science Foundation of USA (Grant No. DMS-0810159)
文摘We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on S^3 with Ric = 2F^2, Ric = 0 and Ric =-2F^2, respectively. This family of metrics provides an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.
基金the National Natural Science Foundation of China(No.10671214)the Science Foundation of Chongqing Education Committee(No.KJ080620)
文摘In this paper, we study the (α,β)-metrics of scalar flag curvature in the form of F = α + εβ + κβ^2/α (ε and k ≠ 0 are constants) and F = α^2/α-β. We prove that these two kinds of metrics are weak Berwaldian if and only if they are Berwaldian and their flag curvatures vanish. In this case, the metrics are locally Minkowskian.