Based on the α-particle model of ^12C nucleus, the differential cross sections for α-^12C elastic scattering at incident energy of 4.2 GeV have been calculated within the framework of Glauber multiple scattering the...Based on the α-particle model of ^12C nucleus, the differential cross sections for α-^12C elastic scattering at incident energy of 4.2 GeV have been calculated within the framework of Glauber multiple scattering theory. The results show that the main features of the measured angular distribution of the cross sections can be reasonably described. The parameterized α-α scattering amplitude, which is the basic input to construct the α-^12 C scattering Glauber amplitude in the a-particle model, is obtained by fitting the α-α scattering data.展开更多
The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus....The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.展开更多
The present study examined the role of Wnt/β-catenin signaling pathway in the degeneration of nucleus pulposus cells and the protective effect of DKK1 on nucleus pulposus cells. The model of nucleus pulposus cell deg...The present study examined the role of Wnt/β-catenin signaling pathway in the degeneration of nucleus pulposus cells and the protective effect of DKK1 on nucleus pulposus cells. The model of nucleus pulposus cell degeneration was induced by intra-disc injection of TNF-α, and the expression of β-catenin protein was detected by Western blotting. The cultured rabbit nucleus pulposus cells were divided into 4 groups. In group A, the cells were cultured with normal medium and served as control group. In group B, the cells were cultured with TNF-α and acted as degeneration group. In group C, the cells were cultured with TNF-α and transfected with Adv-eGFP and was used as fluorescence control group. In group D, the cells were cultured with TNF-α and transfected with Adv-hDKK1-eGFP, serving as intervention group. The expression of typeⅡcollagen, proteoglycan, β-catenin, and MMP-13 in each group was detected by immunocytochemistry and RT-PCR. The result showed that TNF-α increased the expression of β-catenin and MMP-13, and significantly inhibited the synthesis of type Ⅱ collagen and proteoglycan, which resulted in the degeneration of nucleus pulposus cells. This effect could be obviously reversed by DKK1. We are led to concluded that TNF-α could activate the Wnt/β-catenin signaling pathway, and increase the expression of MMP-13, thereby resulting in disc degeneration. Specifically blocking Wnt/β-catenin signaling pathway by DKK-1 could protect the normal metabolism of intervertebral disc tissue. The Wnt pathway plays an important role in the progression of the intervertebral disc degeneration.展开更多
基金National Natural Science Foundation of China under Grant No.10465001
文摘Based on the α-particle model of ^12C nucleus, the differential cross sections for α-^12C elastic scattering at incident energy of 4.2 GeV have been calculated within the framework of Glauber multiple scattering theory. The results show that the main features of the measured angular distribution of the cross sections can be reasonably described. The parameterized α-α scattering amplitude, which is the basic input to construct the α-^12 C scattering Glauber amplitude in the a-particle model, is obtained by fitting the α-α scattering data.
基金Supported by National Natural Science Foundation of China under Grant No.10865002
文摘The a+^2+ Ne elastic scattering angular distributions at lower incident energies of Eα= 12.7-31.1 Me V have been analyzed by using the a-folding potential based on the α+^16O structure model of the ^20Ne nucleus. The a-folding potential with a standard Woods-Saxon type imaginary part, can reasonably describe experimental cross sections and the anomalous large angle scattering (ALAS) features. The anomaly of the a+^20Ne scattering system is further confirmed , in the lower incident energy region.
文摘The present study examined the role of Wnt/β-catenin signaling pathway in the degeneration of nucleus pulposus cells and the protective effect of DKK1 on nucleus pulposus cells. The model of nucleus pulposus cell degeneration was induced by intra-disc injection of TNF-α, and the expression of β-catenin protein was detected by Western blotting. The cultured rabbit nucleus pulposus cells were divided into 4 groups. In group A, the cells were cultured with normal medium and served as control group. In group B, the cells were cultured with TNF-α and acted as degeneration group. In group C, the cells were cultured with TNF-α and transfected with Adv-eGFP and was used as fluorescence control group. In group D, the cells were cultured with TNF-α and transfected with Adv-hDKK1-eGFP, serving as intervention group. The expression of typeⅡcollagen, proteoglycan, β-catenin, and MMP-13 in each group was detected by immunocytochemistry and RT-PCR. The result showed that TNF-α increased the expression of β-catenin and MMP-13, and significantly inhibited the synthesis of type Ⅱ collagen and proteoglycan, which resulted in the degeneration of nucleus pulposus cells. This effect could be obviously reversed by DKK1. We are led to concluded that TNF-α could activate the Wnt/β-catenin signaling pathway, and increase the expression of MMP-13, thereby resulting in disc degeneration. Specifically blocking Wnt/β-catenin signaling pathway by DKK-1 could protect the normal metabolism of intervertebral disc tissue. The Wnt pathway plays an important role in the progression of the intervertebral disc degeneration.