This paper analyzes the unified performance of energy detection(ED) of spectrum sensing(SS) over generalized fading channels in cognitive radios(CRs). The detective performance of SS will be obviously affected by fadi...This paper analyzes the unified performance of energy detection(ED) of spectrum sensing(SS) over generalized fading channels in cognitive radios(CRs). The detective performance of SS will be obviously affected by fading channels among communication nodes, and ED has the advantages of fast implementation, no requirement of priori received information and low complexity, so it is meaningful to investigate ED over various fading channels. The probability density function(p.d.f.) of α-κ-μ distribution is derived to evaluate energy efficiency for sensing systems.The detection probability with Marcum-Q function has been derived and the close-form expressions with moment generating function(MGF) method are deduced to achieve SS.Furthermore, exact closed-form analytic expressions for average area under the receiver operating characteristics curve( AUC) also have been deduced to analyze the performance characteristics of ED over α-κ-μ fading channels.Besides, cooperative spectrum sensing(CSS) with diversity reception has been applied to improve the detection accuracy and mitigate the shadowed fading features with OR-rule. At last, the results show that the detection capacity of ED will be evidently affected by α-κ-μ fading channels, but appropriate channel parameters can improve sensing performance. In addition, the establishedED-fading pattern is approved by simulations,and it can significantly enhance the detection performance of proposed algorithms.展开更多
In this paper, we consider the secure data transmission over α-η-κ-μ fading channels, which are recently proposed to encompass nearly all the well-known statistical models adopted in the literature. In particular,...In this paper, we consider the secure data transmission over α-η-κ-μ fading channels, which are recently proposed to encompass nearly all the well-known statistical models adopted in the literature. In particular, we address the secrecy performance in terms of the average secrecy capacity(ASC) and the secrecy outage probability(SOP), for which novel analytical expressions are derived. Simulation results verify the analysis and demonstrate the impact of the physical parameters on the secrecy performance of this new channel fading model.展开更多
基金supported by the science and technology project of state grid headquarters of China (SGLNDK00KJJS1700200)
文摘This paper analyzes the unified performance of energy detection(ED) of spectrum sensing(SS) over generalized fading channels in cognitive radios(CRs). The detective performance of SS will be obviously affected by fading channels among communication nodes, and ED has the advantages of fast implementation, no requirement of priori received information and low complexity, so it is meaningful to investigate ED over various fading channels. The probability density function(p.d.f.) of α-κ-μ distribution is derived to evaluate energy efficiency for sensing systems.The detection probability with Marcum-Q function has been derived and the close-form expressions with moment generating function(MGF) method are deduced to achieve SS.Furthermore, exact closed-form analytic expressions for average area under the receiver operating characteristics curve( AUC) also have been deduced to analyze the performance characteristics of ED over α-κ-μ fading channels.Besides, cooperative spectrum sensing(CSS) with diversity reception has been applied to improve the detection accuracy and mitigate the shadowed fading features with OR-rule. At last, the results show that the detection capacity of ED will be evidently affected by α-κ-μ fading channels, but appropriate channel parameters can improve sensing performance. In addition, the establishedED-fading pattern is approved by simulations,and it can significantly enhance the detection performance of proposed algorithms.
基金supported by the Fundamental Research Funds for the Center University of China under Grant HIT. MKSTISP. 2016 13
文摘In this paper, we consider the secure data transmission over α-η-κ-μ fading channels, which are recently proposed to encompass nearly all the well-known statistical models adopted in the literature. In particular, we address the secrecy performance in terms of the average secrecy capacity(ASC) and the secrecy outage probability(SOP), for which novel analytical expressions are derived. Simulation results verify the analysis and demonstrate the impact of the physical parameters on the secrecy performance of this new channel fading model.