In this paper, we establish some Rosenthal type inequalities for maximum partial sums of asymptotically almost negatively associated random variables, which extend the corresponding results for negatively associated r...In this paper, we establish some Rosenthal type inequalities for maximum partial sums of asymptotically almost negatively associated random variables, which extend the corresponding results for negatively associated random variables. As applications of these inequalities, by employing the notions of residual Cesàro α-integrability and strong residual Cesàro α-integrability, we derive some results on Lp convergence where 1 < p < 2 and complete convergence. In addition, we estimate the rate of convergence in Marcinkiewicz-Zygmund strong law for partial sums of identically distributed random variables.展开更多
The iteration maps of Euler family for finding zeros of an operatorf in Banach spaces is defined as the partial sum of Taylor expansion of the local inversef z -1 off atz. The unified convergence theorem is establishe...The iteration maps of Euler family for finding zeros of an operatorf in Banach spaces is defined as the partial sum of Taylor expansion of the local inversef z -1 off atz. The unified convergence theorem is established for the iterations of Euler family under the assumption that $\alpha \leqslant 3 - 2\sqrt 2 $ , while the strong condition thatf is analytic in Smale’s criterion α is replaced by the weak condition thatf is of finite order derivative.展开更多
A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence...A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10871217) the SCR of Chongqing Municipal Education Commission (Grant No.KJ090703)
文摘In this paper, we establish some Rosenthal type inequalities for maximum partial sums of asymptotically almost negatively associated random variables, which extend the corresponding results for negatively associated random variables. As applications of these inequalities, by employing the notions of residual Cesàro α-integrability and strong residual Cesàro α-integrability, we derive some results on Lp convergence where 1 < p < 2 and complete convergence. In addition, we estimate the rate of convergence in Marcinkiewicz-Zygmund strong law for partial sums of identically distributed random variables.
文摘The iteration maps of Euler family for finding zeros of an operatorf in Banach spaces is defined as the partial sum of Taylor expansion of the local inversef z -1 off atz. The unified convergence theorem is established for the iterations of Euler family under the assumption that $\alpha \leqslant 3 - 2\sqrt 2 $ , while the strong condition thatf is analytic in Smale’s criterion α is replaced by the weak condition thatf is of finite order derivative.
文摘A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation; we construct a finite difference scheme on α priori (sequentially) adapted meshes and study its convergence. The scheme on α priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution, which allows us to find α priori a subdomain where the computed solution requires a further improvement. This subdomain is defined by the perturbation parameter ε, the step-size of a uniform mesh in χ, and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for improving the solution. To solve the discrete problems aimed at the improvement of the solution, we use uniform meshes on the subdomains. The error of the numerical solution depends weakly on the parameter ε. The scheme converges almost ε-uniformly, precisely, under the condition N^-1 = o (ε^v), where N denotes the number of nodes in the spatial mesh, and the value v = v(K) can be chosen arbitrarily small for suitable K.