The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical mierocavity research, that we are ab...The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical mierocavity research, that we are able to manipulate and utilize this coupling process. When a high Q microeavity couples to a mechanical resonator, they can consolidate into an optomeehanieal system. Benefitting from the unique characteristics offered by optomeehanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanies, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.展开更多
Fiber Bragg grating Fabry-Perot (FBG F-P) cavity is used as the sensing model to measure the refractive index of the liquid solution. The cladding of the fiber, which is used as the F-P cavity, is etched by HF solutio...Fiber Bragg grating Fabry-Perot (FBG F-P) cavity is used as the sensing model to measure the refractive index of the liquid solution. The cladding of the fiber, which is used as the F-P cavity, is etched by HF solution to enhance the sensitivity to the external refractive index. The experimental results show that with the concentration change of the external solution, the effective refractive index of etched fiber will change, thus the spectra of FBG F-P cavity will appear a spilt point. The relationship be...展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
According to the vectorial structure of non-paraxial electromagnetic beams and the method of stationary phase, the analytical TE and TM terms of non-paraxial linearly polarized Caussian beam are presented in the far f...According to the vectorial structure of non-paraxial electromagnetic beams and the method of stationary phase, the analytical TE and TM terms of non-paraxial linearly polarized Caussian beam are presented in the far field. The influence of linearly polarized angle on the relative energy flux distributions of the whole beam and its TE and TM terms is studied. The beam spot of the TE term is perpendicular to the direction of linearly polarized angle, while that of the TM term coincides with the direction of linearly polarized angle. The whole beam spot is elliptical, and the long axis is located at the direction of linearly polarized angle. The relative energy flux distribution of the TE term is relatively centralized in the direction perpendicular to the linearly polarized angle. While that of the TM term is relatively centralized in the direction of linearly polarized angle. To obtain the isolated TM and TE terms, a polarizer should be put at the long and the short axis of the whole beam spot, respectively.展开更多
We demonstrate a technique for single transverse mode operation of high-power broad area laser diode (BAL). In the experiment, the HR mirror is used as an external cavity mirror and the grating is used as a wavelength...We demonstrate a technique for single transverse mode operation of high-power broad area laser diode (BAL). In the experiment, the HR mirror is used as an external cavity mirror and the grating is used as a wavelength selective component. By tiling the HR mirror and the grating, the number of transverse modes oscillating in the cavity can be limited and the spectral bandwidth of the laser diode can be reduced. A single-lobed near diffraction-limited laser beam with the beam divergence (FWHM) of 0.43°, the spectral line-width of 0.7 nm and the output power of 350 mW are obtained. With the feedback, the power density of the output laser beam is increased 6 times in comparison with the free running.展开更多
文摘The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical mierocavity research, that we are able to manipulate and utilize this coupling process. When a high Q microeavity couples to a mechanical resonator, they can consolidate into an optomeehanieal system. Benefitting from the unique characteristics offered by optomeehanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanies, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.
基金supported by the National Nature Scien- ce Foundation of China (Grant No.60672015).
文摘Fiber Bragg grating Fabry-Perot (FBG F-P) cavity is used as the sensing model to measure the refractive index of the liquid solution. The cladding of the fiber, which is used as the F-P cavity, is etched by HF solution to enhance the sensitivity to the external refractive index. The experimental results show that with the concentration change of the external solution, the effective refractive index of etched fiber will change, thus the spectra of FBG F-P cavity will appear a spilt point. The relationship be...
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
文摘According to the vectorial structure of non-paraxial electromagnetic beams and the method of stationary phase, the analytical TE and TM terms of non-paraxial linearly polarized Caussian beam are presented in the far field. The influence of linearly polarized angle on the relative energy flux distributions of the whole beam and its TE and TM terms is studied. The beam spot of the TE term is perpendicular to the direction of linearly polarized angle, while that of the TM term coincides with the direction of linearly polarized angle. The whole beam spot is elliptical, and the long axis is located at the direction of linearly polarized angle. The relative energy flux distribution of the TE term is relatively centralized in the direction perpendicular to the linearly polarized angle. While that of the TM term is relatively centralized in the direction of linearly polarized angle. To obtain the isolated TM and TE terms, a polarizer should be put at the long and the short axis of the whole beam spot, respectively.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60278038.
文摘We demonstrate a technique for single transverse mode operation of high-power broad area laser diode (BAL). In the experiment, the HR mirror is used as an external cavity mirror and the grating is used as a wavelength selective component. By tiling the HR mirror and the grating, the number of transverse modes oscillating in the cavity can be limited and the spectral bandwidth of the laser diode can be reduced. A single-lobed near diffraction-limited laser beam with the beam divergence (FWHM) of 0.43°, the spectral line-width of 0.7 nm and the output power of 350 mW are obtained. With the feedback, the power density of the output laser beam is increased 6 times in comparison with the free running.