During the 22nd Chinese Antarctic Research Expedition (CHINARE-22), the atmospheric gas samples above the oceanic surface and near the surface were collected on the track for the scientific ship "Xuelong" an...During the 22nd Chinese Antarctic Research Expedition (CHINARE-22), the atmospheric gas samples above the oceanic surface and near the surface were collected on the track for the scientific ship "Xuelong" and on Millor Peninsula of eastern Antarctica, respectively, using the Tedlar gas bags. Every day the sampling times were 10:00 and 22:00 (local time), respectively. In the laboratory, high-precision measurement of the isotopic compositions for N2O in these gas samples was conducted using Thermo Finnigan MAT-253 Isotopic Mass Spectrometer with a fully automated interface for the pre-GC concen-tration (PreCon) of trace gases. The temporal and spatial variations of δ 15N and δ 18O in atmospheric N2O were analyzed. The mean δ 15N and δ 18O-N2O values above the oceanic surface were (7.21±0.50)‰ and (44.52±0.52)‰, respectively. From 30°N to Antarctica, the δ 15N (6.05‰―7.88‰) linearly increased with the rate of about 0.01‰ with the latitude while the δ 18O (43.05‰―48.78‰) showed a large fluctua-tion. The δ 15N negatively correlated with air temperature and N2O concentration, and slightly positively correlated with δ 18O. The summertime variations of δ 15N and δ 18O-N2O appeared the same trend on Millor Peninsula of eastern Antarctica. They significantly positively correlated with each other and negatively with N2O concentration. The δ 15N and δ 18O-N2O at different sites averaged (7.42±0.35)‰ and (44.69±0.49)‰, respectively, slightly higher than those above the oceanic surface, significantly higher than those of atmospheric N2O in the low-latitude regions of Northern Hemisphere. The predominant factors affecting the spatial variations of δ 15N and δ 18O values were also discussed. The isotopic data given in this study can help to investigate the global and regional N2O budgets.展开更多
The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone.Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan ...The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone.Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan Island in summer 2015 and autumn 2016.From perspectives of nutrient dynamics and physical transport,the nutrient fluxes entered the upper 50 m water depth(between the mixed layer and the euphotic zone)arisen from the upwelling were estimated to be 2.5-5.4 mmol/(m^(2)·d),0.15-0.28 mmol/(m^(2)·d),and 2.2-7.2 mmol/(m^(2)·d)for dissolved inorganic nitrogen(DIN),phosphate(DIP),and dissolved silicate(DSi),respectively,which were around 6-to 12-fold those in the background area.The upwelled nutrients supported an additional plankton growth of(14.70±8.95)mg/m^(2)for chlorophyll a(Chl a).The distributions of nitrateδ^(15)N andδ^(18)O above the 300 m water depth(top of the North Pacific Intermediate Water)were different among the upwelling area,background area in summer,and the stations in autumn,and the difference of environmental and biogeochemical conditions between seasons should be the reason.The higher DIN/DIP concentration ratio,nitrate concentration anomaly,and lower nitrate isotope anomaly(Δ(15,18))in the upper ocean in summer than in autumn indicated the stronger nitrogen fixation and atmospheric deposition,and the following fixed nitrogen regeneration in summer.The higher values of Chl a and nitrateδ^(15)N andδ^(18)O within the euphotic zone in autumn than the background area in summer suggested the stronger nitrate assimilation in autumn.The differences in relatively strength of the assimilation,nitrogen fixation and atmospheric deposition,and the following remineralization and nitrification between the two seasons made the higherδ^(18)O:δ^(15)N and larger difference of enzymatic isotope fractionation factors^(15)εand^(18)εfor nitrate assimilation in summer than in autumn above the North Pacific Tropical Water.展开更多
Groundwater forms the main freshwater supply in arid and semi-arid areas,and contamination of this precious resource is complicated by the slow rate of recharge in these areas.Nitrate contamination of groundwater is a...Groundwater forms the main freshwater supply in arid and semi-arid areas,and contamination of this precious resource is complicated by the slow rate of recharge in these areas.Nitrate contamination of groundwater is a global water quality problem,as it entails threat to human health as well as aquatic ecosystems.Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality.Stable isotope composition of the dissolved nitrate(δ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-)has been applied to identify NO_(3)-sources and the main transformation processes in the upper aquifer system(A1/2,A4,and B2/A7 aquifers)in the Wadi Shueib catchment area,Jordan.Moreover,the stable isotope compositions of the groundwater(δ^(2)H-H_(2)O andδ^(18)O-H_(2)O)in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater.Results revealed that groundwater in the study area is fresh and hard-very hard water,and mainly a Ca-Mg-Cl type.NO_(3)-concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L.Most of the samples showed concentration higher than the natural background concentration of NO_(3)-(5.0-10.0 mg/L).Theδ^(2)H-H_(2)O andδ^(18)O-H_(2)O values indicated that the groundwater is meteoric,and of Mediterranean origin,with a strong evaporation effect.Theδ^(15)N-NO_(3)-values ranged between 6.0‰and 11.3‰with an average of 8.7‰,and theδ^(18)O-NO_(3)-values ranged between 1.6‰and 5.9‰with an average of 3.4‰.These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure,and soil NH4.Nitrification and denitrification are the main transformation processes affecting nitrogen species.Statistical analysis revealed no significant differences in theδ^(2)H-H_(2)O andδ^(18)OH_(2)O values,andδ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-values for the three aquifers(A1/2,A4,and B2/A7),indicating that the groundwater of these aquifers has the 展开更多
The denitrifier method is widely used as a novel pretreatment method for the determination of nitrogen and oxygen isotope ratios as it can provide quantitative and high-sensitivity measurements. Nevertheless, the meth...The denitrifier method is widely used as a novel pretreatment method for the determination of nitrogen and oxygen isotope ratios as it can provide quantitative and high-sensitivity measurements. Nevertheless, the method is limited by relatively low measurement accuracy for δ18 O. In this study, we analyzed the factors influencing the accuracy of δ18 O determination, and then systematically investigated the effects of dissolved oxygen concentrations and nitrate sample sizes on estimates of the δ15 N and δ18 O of nitrate reference materials. The δ18 O contraction ratio was used to represent the relationship between the measured difference and true difference between two reference materials. We obtained the following main results:(1) a gas-liquid ratio of 3:10(v/v) in ordinary triangular flasks and a shaking speed of 120 r/min produced an optimal range(1.9 to 2.6 mg/L) in the concentration of dissolved oxygen for accurately determining δ18 O, and(2) the δ18 O contraction ratio decreased as nitrate sample size decreased within a certain range(1.0 to 0.1 μmol). Our results suggested that δ18 O contraction is influenced mainly by dissolved oxygen concentrations in pure culture, and provided a model for improving the accuracy of oxygen isotope analysis.展开更多
基金the National Natural Science Foundation of China (Grant Nos40676005 and 40406001)
文摘During the 22nd Chinese Antarctic Research Expedition (CHINARE-22), the atmospheric gas samples above the oceanic surface and near the surface were collected on the track for the scientific ship "Xuelong" and on Millor Peninsula of eastern Antarctica, respectively, using the Tedlar gas bags. Every day the sampling times were 10:00 and 22:00 (local time), respectively. In the laboratory, high-precision measurement of the isotopic compositions for N2O in these gas samples was conducted using Thermo Finnigan MAT-253 Isotopic Mass Spectrometer with a fully automated interface for the pre-GC concen-tration (PreCon) of trace gases. The temporal and spatial variations of δ 15N and δ 18O in atmospheric N2O were analyzed. The mean δ 15N and δ 18O-N2O values above the oceanic surface were (7.21±0.50)‰ and (44.52±0.52)‰, respectively. From 30°N to Antarctica, the δ 15N (6.05‰―7.88‰) linearly increased with the rate of about 0.01‰ with the latitude while the δ 18O (43.05‰―48.78‰) showed a large fluctua-tion. The δ 15N negatively correlated with air temperature and N2O concentration, and slightly positively correlated with δ 18O. The summertime variations of δ 15N and δ 18O-N2O appeared the same trend on Millor Peninsula of eastern Antarctica. They significantly positively correlated with each other and negatively with N2O concentration. The δ 15N and δ 18O-N2O at different sites averaged (7.42±0.35)‰ and (44.69±0.49)‰, respectively, slightly higher than those above the oceanic surface, significantly higher than those of atmospheric N2O in the low-latitude regions of Northern Hemisphere. The predominant factors affecting the spatial variations of δ 15N and δ 18O values were also discussed. The isotopic data given in this study can help to investigate the global and regional N2O budgets.
基金The National Natural Science Foundation of China under contract No.41376086the Taishan Scholars Programme of Shandong Provincethe Aoshan Talents Program supported by the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASTP-OS08。
文摘The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone.Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan Island in summer 2015 and autumn 2016.From perspectives of nutrient dynamics and physical transport,the nutrient fluxes entered the upper 50 m water depth(between the mixed layer and the euphotic zone)arisen from the upwelling were estimated to be 2.5-5.4 mmol/(m^(2)·d),0.15-0.28 mmol/(m^(2)·d),and 2.2-7.2 mmol/(m^(2)·d)for dissolved inorganic nitrogen(DIN),phosphate(DIP),and dissolved silicate(DSi),respectively,which were around 6-to 12-fold those in the background area.The upwelled nutrients supported an additional plankton growth of(14.70±8.95)mg/m^(2)for chlorophyll a(Chl a).The distributions of nitrateδ^(15)N andδ^(18)O above the 300 m water depth(top of the North Pacific Intermediate Water)were different among the upwelling area,background area in summer,and the stations in autumn,and the difference of environmental and biogeochemical conditions between seasons should be the reason.The higher DIN/DIP concentration ratio,nitrate concentration anomaly,and lower nitrate isotope anomaly(Δ(15,18))in the upper ocean in summer than in autumn indicated the stronger nitrogen fixation and atmospheric deposition,and the following fixed nitrogen regeneration in summer.The higher values of Chl a and nitrateδ^(15)N andδ^(18)O within the euphotic zone in autumn than the background area in summer suggested the stronger nitrate assimilation in autumn.The differences in relatively strength of the assimilation,nitrogen fixation and atmospheric deposition,and the following remineralization and nitrification between the two seasons made the higherδ^(18)O:δ^(15)N and larger difference of enzymatic isotope fractionation factors^(15)εand^(18)εfor nitrate assimilation in summer than in autumn above the North Pacific Tropical Water.
基金funded by the by the Deanship of Scientific Research,Jordan University of Science and Technology(20170338).
文摘Groundwater forms the main freshwater supply in arid and semi-arid areas,and contamination of this precious resource is complicated by the slow rate of recharge in these areas.Nitrate contamination of groundwater is a global water quality problem,as it entails threat to human health as well as aquatic ecosystems.Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality.Stable isotope composition of the dissolved nitrate(δ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-)has been applied to identify NO_(3)-sources and the main transformation processes in the upper aquifer system(A1/2,A4,and B2/A7 aquifers)in the Wadi Shueib catchment area,Jordan.Moreover,the stable isotope compositions of the groundwater(δ^(2)H-H_(2)O andδ^(18)O-H_(2)O)in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater.Results revealed that groundwater in the study area is fresh and hard-very hard water,and mainly a Ca-Mg-Cl type.NO_(3)-concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L.Most of the samples showed concentration higher than the natural background concentration of NO_(3)-(5.0-10.0 mg/L).Theδ^(2)H-H_(2)O andδ^(18)O-H_(2)O values indicated that the groundwater is meteoric,and of Mediterranean origin,with a strong evaporation effect.Theδ^(15)N-NO_(3)-values ranged between 6.0‰and 11.3‰with an average of 8.7‰,and theδ^(18)O-NO_(3)-values ranged between 1.6‰and 5.9‰with an average of 3.4‰.These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure,and soil NH4.Nitrification and denitrification are the main transformation processes affecting nitrogen species.Statistical analysis revealed no significant differences in theδ^(2)H-H_(2)O andδ^(18)OH_(2)O values,andδ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-values for the three aquifers(A1/2,A4,and B2/A7),indicating that the groundwater of these aquifers has the
基金Project supported by the National Key R&D Program of China(No.2016YFD0200106)the National Natural Science Foundation of China(No.41571450)
文摘The denitrifier method is widely used as a novel pretreatment method for the determination of nitrogen and oxygen isotope ratios as it can provide quantitative and high-sensitivity measurements. Nevertheless, the method is limited by relatively low measurement accuracy for δ18 O. In this study, we analyzed the factors influencing the accuracy of δ18 O determination, and then systematically investigated the effects of dissolved oxygen concentrations and nitrate sample sizes on estimates of the δ15 N and δ18 O of nitrate reference materials. The δ18 O contraction ratio was used to represent the relationship between the measured difference and true difference between two reference materials. We obtained the following main results:(1) a gas-liquid ratio of 3:10(v/v) in ordinary triangular flasks and a shaking speed of 120 r/min produced an optimal range(1.9 to 2.6 mg/L) in the concentration of dissolved oxygen for accurately determining δ18 O, and(2) the δ18 O contraction ratio decreased as nitrate sample size decreased within a certain range(1.0 to 0.1 μmol). Our results suggested that δ18 O contraction is influenced mainly by dissolved oxygen concentrations in pure culture, and provided a model for improving the accuracy of oxygen isotope analysis.