The deactivation kinetics of Pd(PPh3)2Cl2 in the monocarbonylation of benzyl chloride to synthesize phenylacetic acid is studied in this paper. Solid 1-(2-pyridylazo)-2-naphthol (PAN) is used as the colouring agent, a...The deactivation kinetics of Pd(PPh3)2Cl2 in the monocarbonylation of benzyl chloride to synthesize phenylacetic acid is studied in this paper. Solid 1-(2-pyridylazo)-2-naphthol (PAN) is used as the colouring agent, and the concentration of Pd(PPh3)2Cl2 in the system is measured through absorptiometry. The result shows that the optimum condition of the chromogenic reaction between Pd2+ and PAN is: 0.5 ml of 0.04% PAN added to 10 ml of Pd2+ solution (1.0×10-6-2.0×10-5 mol/L), and heated in a constant temperature water bath at 40℃ for about 30 min, with pH of the solution being about 3.0. The molar coefficient of absorption is 1.384×104 L/(mol·cm); the orders of the hydrolytic reaction to the concentration of Pd(PPh3)2Cl2, PPh3, phenylacetic acid and NaOH are 0.5, minus 0.8, 2 and 1.2, respectively. The activation energy (E) of the hydrolytic reaction is 75.59 kJ/mol, and the pre-exponential factor is 1.68×1012.展开更多
Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-ste...Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.展开更多
The effects of various metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Co2+) and anions (Cl–, SO2-4 and CH3COO–) on two cellulases were investigated. Fitting of the data to Michaelis-Menten kinetics showed that Al3+ noncom-p...The effects of various metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Co2+) and anions (Cl–, SO2-4 and CH3COO–) on two cellulases were investigated. Fitting of the data to Michaelis-Menten kinetics showed that Al3+ noncom-petitively inhibited cellulase (Km = 22.68 g/L;Vmax = 0.269 mg/min at 5.0 mmol/L AlCl3) and Mg2+ competitively inhibited cellulase (Km = 50.0 g/L;Vmax = 0.434 mg/min at 10.0 mmol/L MgCl2) Different metal ions increased or decreased inhibition of cellulase activity slightly below 1 mmol/L and strongly over 10 mmol/L. The results indicated that filter paper activeity (FPA) was suitable for analysis of enzymatic saccharification with various lignocellulosic substrates whereas crude cellulase was suitable for applications in the biomass industry. Some metal ions were proved to inhibit cellulase reversibly.展开更多
基金Project supported by the Foundation of Scientific and Technological from the Ministry of Education (No. 03071), of Natural Science Foundation of Jiangxi Province (No. 0320013) of the Youth Foundation of Nanchang University.
文摘The deactivation kinetics of Pd(PPh3)2Cl2 in the monocarbonylation of benzyl chloride to synthesize phenylacetic acid is studied in this paper. Solid 1-(2-pyridylazo)-2-naphthol (PAN) is used as the colouring agent, and the concentration of Pd(PPh3)2Cl2 in the system is measured through absorptiometry. The result shows that the optimum condition of the chromogenic reaction between Pd2+ and PAN is: 0.5 ml of 0.04% PAN added to 10 ml of Pd2+ solution (1.0×10-6-2.0×10-5 mol/L), and heated in a constant temperature water bath at 40℃ for about 30 min, with pH of the solution being about 3.0. The molar coefficient of absorption is 1.384×104 L/(mol·cm); the orders of the hydrolytic reaction to the concentration of Pd(PPh3)2Cl2, PPh3, phenylacetic acid and NaOH are 0.5, minus 0.8, 2 and 1.2, respectively. The activation energy (E) of the hydrolytic reaction is 75.59 kJ/mol, and the pre-exponential factor is 1.68×1012.
基金Supported by the Foundation for the Authors of National Excellent Doctoral Dissertation of China (200345)the National High Technology Research and Development Program of China (2007AA02Z201)the National Basic Research Program of China (2007CB714304)
文摘Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.
文摘The effects of various metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Co2+) and anions (Cl–, SO2-4 and CH3COO–) on two cellulases were investigated. Fitting of the data to Michaelis-Menten kinetics showed that Al3+ noncom-petitively inhibited cellulase (Km = 22.68 g/L;Vmax = 0.269 mg/min at 5.0 mmol/L AlCl3) and Mg2+ competitively inhibited cellulase (Km = 50.0 g/L;Vmax = 0.434 mg/min at 10.0 mmol/L MgCl2) Different metal ions increased or decreased inhibition of cellulase activity slightly below 1 mmol/L and strongly over 10 mmol/L. The results indicated that filter paper activeity (FPA) was suitable for analysis of enzymatic saccharification with various lignocellulosic substrates whereas crude cellulase was suitable for applications in the biomass industry. Some metal ions were proved to inhibit cellulase reversibly.