Background Molecular targeted drugs is now widely used in non-small cell lung cancer (NSCLC) clinical treatment. Icotinib hydrochloride is a new type of oral epidermal growth factor receptor (EGFR) tyrosine kinase...Background Molecular targeted drugs is now widely used in non-small cell lung cancer (NSCLC) clinical treatment. Icotinib hydrochloride is a new type of oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs). In this study, we examined the role of EGFR, K-RAS, B-RAF somatic mutations and EGFR mRNA expression in tumor specimens from advanced NSCLC patients as predicators of the efficacy of icotinib hydrochloride. Methods We analyzed tumor paraffin-embedded specimens, which were obtained from 14 of 40 patients with advanced NSCLC who enrolled in the stage I clinical trial of icotinib hydrochloride. Somatic mutations were evaluated by mutant-enriched liquidchip (MEL) technology, and EGFR mRNA expression was measured by branched DNA liquidchip (MBL) technology. Results In the 14 specimens, seven patients showed EGFR mutations, exon 19 deletion (3/7) and exon 21 point mutation (4/7); and two patients showed K-RAS mutation. No mutations in EGFR exon 20. or B-RAF were detected. In patients with EGFR mutation, one patient developed progress disease (PD), three patients had stable disease (SD), two patients had partial responses (PR) and one patient had a complete response (CR). In patients with wild-type EGFR, four patients had PD, three patients acquired SD, and none had PR/CR (P=-0.0407). EGFR mutations were associated with better progress-free survival (PFS) (141 days vs. 61 days) but without a statistically significant difference (P=0.8597), and median overall survival (OS) (-〉449 days vs. 140 days). EGFR mRNA expression levels were evaluated (three high, eight moderate, one low, and two that can not be measured due to insufficient tumor tissue) and no statistically significant relationships was observed with response, PFS or OS. Conclusions The EGFR mutation rate was consistent with that reported in the Asian population, so the MEL technology is reliable for measuring EGFR mutation with high throughput and rapidity展开更多
Mesenchymal stem cells(MSCs) have been used to treat patients suffering from acute myocardial infarction(AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells ...Mesenchymal stem cells(MSCs) have been used to treat patients suffering from acute myocardial infarction(AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microR NAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease(CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD.展开更多
Early screening for colorectal cancer(CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate b...Early screening for colorectal cancer(CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate because of their high cost and cumbersome preparatory procedures that ultimately lead to a low participation rate. People simply do not like to have colonoscopies. It would be ideal, therefore, to develop an alternative modality based on blood biomarkers as the first line screening test. This will allow for the differentiation of the general population from high risk individuals. Colonoscopy would then become the secondary test, to further screen the high risk segment of the population. This will encourage participation and therefore help to reach the goal of early detection and thereby reduce the anticipated increasing global CRC incidence rate. A blood-based screening test is anappealing alternative as it is non-invasive and poses minimal risk to patients. It is easy to perform, can be repeated at shorter intervals, and therefore would likely lead to a much higher participation rate. This review surveys various blood-based test strategies currently under investigation, discusses the potency of what is available, and assesses how new technology may contribute to future test design.展开更多
As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings ...As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.展开更多
Long non-coding RNAs(lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury ti...Long non-coding RNAs(lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury tissue from three patients of the 101 st Hospital of the People's Liberation Army, China(specifically, a 36-year-old male, a 52-year-old female, and a 49-year-old female), who were diagnosed with traumatic brain injury and underwent brain contusion removal surgery. Tissue surrounding the brain contusion in the three patients was used as control tissue to observe expression characteristics of lncRNAs and mRNAs in human traumatic brain injury tissue. Volcano plot filtering identified 99 lncRNAs and 63 mRNAs differentially expressed in frontotemporal tissue of the two groups(P < 0.05, fold change > 1.2). Microarray analysis showed that 43 lncRNAs were up-regulated and 56 lncRNAs were down-regulated. Meanwhile, 59 mRNAs were up-regulated and 4 mRNAs were down-regulated. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses revealed 27 signaling pathways associated with target genes and, in particular, legionellosis and influenza A signaling pathways. Subsequently, a lncRNA-gene network was generated, which showed an absolute correlation coefficient value > 0.99 for 12 lncRNA-mRNA pairs. Finally, quantitative real-time polymerase chain reaction confirmed different expression of the five most up-regulated mRNAs within the two groups, which was consistent with the microarray results. In summary, our results show that expression profiles of mRNAs and lncRNAs are significantly different between human traumatic brain injury tissue and surrounding tissue, providing novel insight regarding lncRNAs' involvement in human traumatic brain injury. All participants provided informed consent. This research was registered in the Chinese Clinical Trial Registry(registration number: ChiCTR-TCC-13004002) and the protocol version number is 1.0.展开更多
文摘Background Molecular targeted drugs is now widely used in non-small cell lung cancer (NSCLC) clinical treatment. Icotinib hydrochloride is a new type of oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs). In this study, we examined the role of EGFR, K-RAS, B-RAF somatic mutations and EGFR mRNA expression in tumor specimens from advanced NSCLC patients as predicators of the efficacy of icotinib hydrochloride. Methods We analyzed tumor paraffin-embedded specimens, which were obtained from 14 of 40 patients with advanced NSCLC who enrolled in the stage I clinical trial of icotinib hydrochloride. Somatic mutations were evaluated by mutant-enriched liquidchip (MEL) technology, and EGFR mRNA expression was measured by branched DNA liquidchip (MBL) technology. Results In the 14 specimens, seven patients showed EGFR mutations, exon 19 deletion (3/7) and exon 21 point mutation (4/7); and two patients showed K-RAS mutation. No mutations in EGFR exon 20. or B-RAF were detected. In patients with EGFR mutation, one patient developed progress disease (PD), three patients had stable disease (SD), two patients had partial responses (PR) and one patient had a complete response (CR). In patients with wild-type EGFR, four patients had PD, three patients acquired SD, and none had PR/CR (P=-0.0407). EGFR mutations were associated with better progress-free survival (PFS) (141 days vs. 61 days) but without a statistically significant difference (P=0.8597), and median overall survival (OS) (-〉449 days vs. 140 days). EGFR mRNA expression levels were evaluated (three high, eight moderate, one low, and two that can not be measured due to insufficient tumor tissue) and no statistically significant relationships was observed with response, PFS or OS. Conclusions The EGFR mutation rate was consistent with that reported in the Asian population, so the MEL technology is reliable for measuring EGFR mutation with high throughput and rapidity
文摘Mesenchymal stem cells(MSCs) have been used to treat patients suffering from acute myocardial infarction(AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microR NAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease(CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD.
基金Supported by The Valley Hospital Foundation Research FundThe community of The Valley Hospital in Ridgewood,NJ,especially Ms.Audrey Meyers,CEO,Mr.Anastasios Kozaitis,president of the Valley Hospital Foundation
文摘Early screening for colorectal cancer(CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate because of their high cost and cumbersome preparatory procedures that ultimately lead to a low participation rate. People simply do not like to have colonoscopies. It would be ideal, therefore, to develop an alternative modality based on blood biomarkers as the first line screening test. This will allow for the differentiation of the general population from high risk individuals. Colonoscopy would then become the secondary test, to further screen the high risk segment of the population. This will encourage participation and therefore help to reach the goal of early detection and thereby reduce the anticipated increasing global CRC incidence rate. A blood-based screening test is anappealing alternative as it is non-invasive and poses minimal risk to patients. It is easy to perform, can be repeated at shorter intervals, and therefore would likely lead to a much higher participation rate. This review surveys various blood-based test strategies currently under investigation, discusses the potency of what is available, and assesses how new technology may contribute to future test design.
文摘As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.
基金supported by the National Natural Science Foundation of China,No.81571939(to KX),81601719(to JZ)and 81772134(to KX)Key Research and Development Program of Hunan Province of China,No.2018SK2091(to KX)+1 种基金Wu Jie-Ping Medical Foundation of the Minister of Health of China,No.320.6750.14118(to KX)Teacher Research Foundation of Central South University of China,No.2014JSJJ026(to KX)
文摘Long non-coding RNAs(lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury tissue from three patients of the 101 st Hospital of the People's Liberation Army, China(specifically, a 36-year-old male, a 52-year-old female, and a 49-year-old female), who were diagnosed with traumatic brain injury and underwent brain contusion removal surgery. Tissue surrounding the brain contusion in the three patients was used as control tissue to observe expression characteristics of lncRNAs and mRNAs in human traumatic brain injury tissue. Volcano plot filtering identified 99 lncRNAs and 63 mRNAs differentially expressed in frontotemporal tissue of the two groups(P < 0.05, fold change > 1.2). Microarray analysis showed that 43 lncRNAs were up-regulated and 56 lncRNAs were down-regulated. Meanwhile, 59 mRNAs were up-regulated and 4 mRNAs were down-regulated. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses revealed 27 signaling pathways associated with target genes and, in particular, legionellosis and influenza A signaling pathways. Subsequently, a lncRNA-gene network was generated, which showed an absolute correlation coefficient value > 0.99 for 12 lncRNA-mRNA pairs. Finally, quantitative real-time polymerase chain reaction confirmed different expression of the five most up-regulated mRNAs within the two groups, which was consistent with the microarray results. In summary, our results show that expression profiles of mRNAs and lncRNAs are significantly different between human traumatic brain injury tissue and surrounding tissue, providing novel insight regarding lncRNAs' involvement in human traumatic brain injury. All participants provided informed consent. This research was registered in the Chinese Clinical Trial Registry(registration number: ChiCTR-TCC-13004002) and the protocol version number is 1.0.