The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from...The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from room temperature to 573 K. With temperature increasing, it was noted that the emission intensity of as-repared phosphors decreased considerably more rapidly when pumped by 460 nm than by 340 nm. The temperature-intensity curves under different excitation wavelengths were obtained using an Arrhenius function, and the corresponding activation energies were also obtained respectively. Thus, the experimental phenomenon was discussed in terms of nonradiative decay rate. The effects of as-prepared phosphors on the performance of the white LED with changing temperature were also studied.展开更多
The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented t...The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.展开更多
Ultra-fine Ce:YAG phosphors were prepared by homogeneous precipitation under microwave irradiation method . The formation of Ce: YAG was investigated by means of XRD and DTA/TG. The purified YAG crystallized phase was...Ultra-fine Ce:YAG phosphors were prepared by homogeneous precipitation under microwave irradiation method . The formation of Ce: YAG was investigated by means of XRD and DTA/TG. The purified YAG crystallized phase was obtained at a lower temperature (1100℃). Basically spherical Ce:YAG powders were indicated from TEM images, and the size of the particles is about 80 nm. Two peaks of 436 and 473 nm can be seen from the excitation spectrum in the range of 402 -510 nm. A broad emission band located at 480 ~ 630 nm shows the phosphors prepared by this method have good emission properties.展开更多
Luminescent terbium doped yttrium aluminum garnet (YAG∶Tb) powders were prepared using yttrium and aluminum oxide precursor particles produced by combustion process with glycine. Heat treatment of the resulting precu...Luminescent terbium doped yttrium aluminum garnet (YAG∶Tb) powders were prepared using yttrium and aluminum oxide precursor particles produced by combustion process with glycine. Heat treatment of the resulting precursor powders at 950℃or 1450℃for 2h, yielded pure YAG particles. The morphology of YAG∶Yb phosphor after sintering at 1450℃appeared to be spherical or elliptical and the grain size of the phosphor was in the range of 0.6 to 1.4μm. From the photoluminescence spectra, transitions 5D4 7FJ corresponding to Tb3+in YAG matrices were identified. The prominent transition 5D4 7F6 emission for YAG∶0.05Tb phosphor after sintering at 1450℃was very significant to improve the chromaticity of YAG∶Tb phosphor.展开更多
基金the Key Technologies R&D Program of Shandong Province (2006gg2201014)Tianjin Natural Science Foundation (07JCYBJC06400)Tianjin Education Committee Science and Technology Development Foundation
文摘The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from room temperature to 573 K. With temperature increasing, it was noted that the emission intensity of as-repared phosphors decreased considerably more rapidly when pumped by 460 nm than by 340 nm. The temperature-intensity curves under different excitation wavelengths were obtained using an Arrhenius function, and the corresponding activation energies were also obtained respectively. Thus, the experimental phenomenon was discussed in terms of nonradiative decay rate. The effects of as-prepared phosphors on the performance of the white LED with changing temperature were also studied.
基金Project supported by the National Natural Science Foundation of China (20071031)
文摘The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.
基金Project supported by Foundation for the Excellent Middle-Aged or Young Scientists of Shandong Province (02BS049)
文摘Ultra-fine Ce:YAG phosphors were prepared by homogeneous precipitation under microwave irradiation method . The formation of Ce: YAG was investigated by means of XRD and DTA/TG. The purified YAG crystallized phase was obtained at a lower temperature (1100℃). Basically spherical Ce:YAG powders were indicated from TEM images, and the size of the particles is about 80 nm. Two peaks of 436 and 473 nm can be seen from the excitation spectrum in the range of 402 -510 nm. A broad emission band located at 480 ~ 630 nm shows the phosphors prepared by this method have good emission properties.
文摘Luminescent terbium doped yttrium aluminum garnet (YAG∶Tb) powders were prepared using yttrium and aluminum oxide precursor particles produced by combustion process with glycine. Heat treatment of the resulting precursor powders at 950℃or 1450℃for 2h, yielded pure YAG particles. The morphology of YAG∶Yb phosphor after sintering at 1450℃appeared to be spherical or elliptical and the grain size of the phosphor was in the range of 0.6 to 1.4μm. From the photoluminescence spectra, transitions 5D4 7FJ corresponding to Tb3+in YAG matrices were identified. The prominent transition 5D4 7F6 emission for YAG∶0.05Tb phosphor after sintering at 1450℃was very significant to improve the chromaticity of YAG∶Tb phosphor.