Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK...Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK p42 are phosphorylated, and cPLA2 is activated with a significant increase of the release of [ H3 ] AA by macrophages in response to LPS and PMA. Compared with the very recent finding that LPS and PMA trigger the activation and translocation of PKC-α and PKC-ε, these findings suggest that there is a connection between PKC signaling pathway and the Raf-1/MAPK pathway and that the activation of these main signaling events may be closely related to the secretion of IL-12 during LPS-induced modulation of macrophages.展开更多
基金Project supported by the National Natural Science Foundation of China, Shanghai Joint Laboratory of Life Science, Shanghai Institute of Cell Biology, and Director's Foundations of Chinese Academy of Sciences and Shanghai Institute of Cell Biology.
文摘Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK p42 are phosphorylated, and cPLA2 is activated with a significant increase of the release of [ H3 ] AA by macrophages in response to LPS and PMA. Compared with the very recent finding that LPS and PMA trigger the activation and translocation of PKC-α and PKC-ε, these findings suggest that there is a connection between PKC signaling pathway and the Raf-1/MAPK pathway and that the activation of these main signaling events may be closely related to the secretion of IL-12 during LPS-induced modulation of macrophages.