Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhel... Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelms thermal forcing in maintaining the mean flow in which the internal mechanical forcing associated with horizontal eddy flux of momentum plays the most important roles. Both internal forcing and external forcing are shown to be active and at the first place for the mean flow variations, whereas the forcing-induced mean meridional circulation is passive and secondary. It is also shown that the effects on mean flow of external mechanical forcing are concentrated in the lower troposphere, whereas those due to wave-mean flow interaction are more important in the upper troposphere. These act together and result in the vertically easterly shear in low latitudes and westerly shear in mid-latitudes. This vertical shear of mean flow is to some extent weakened by thermal forcing.展开更多
This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions ...This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing.展开更多
Due to their huge socio-economic impacts and complex formation causes,extreme and continuous drought events have become the focus and nodus of research in recent years.In the midsummer(July-August)of 2022,a severe dro...Due to their huge socio-economic impacts and complex formation causes,extreme and continuous drought events have become the focus and nodus of research in recent years.In the midsummer(July-August)of 2022,a severe drought event occurred in the whole Yangtze River Basin(YRB),China.During that period,the precipitation in the upper,middle and lower reaches of the YRB dropped over 40%less than the 1961-2021 climatic mean,which had never happened previously.Furthermore,the temperature was the highest during 1961-2022.The record-breaking magnitude of less rainfall and high temperature directly led to the continuous development of this extreme drought event.An atmospheric moisture budget analysis revealed that the YRB midsummer rainfall anomaly was dominated by the anomalous powerful vertical moisture advection,which was derived from the strongest descending motion over the whole YRB in the 2022 midsummer during 1981-2022.The western Pacific subtropical high(WPSH)during the midsummer remained stronger,more westward and lasted longer than the climatic mean.As a result,the whole YRB was controlled by a positive geopotential height centre.Further evidence revealed that the anomalous subtropical zonal flow played a crucial role in inducing the extreme descent over the YRB.Moreover,the anomalous upper-tropospheric easterly flow over the YRB in 2022 is the strongest during 1981-2022,modulating the generation of the unprecedented descent anomaly over the YRB.The likelihood that an integrated connection of severe drought in East Asia and flood in West Asia and northwestern South Asia would increase when the extremely strong easterly anomalies in the upper troposphere emerged and induced descending adiabatic flow on the eastern sides of the Tibetan Plateau.The results of this study can provide scientific insights into the predictability of extreme drought events and provide ways to improve predictions.展开更多
An attempt has been made to apply Arnold type nonlinear stability criteria to the diagnostic study of the persistence (stability) or breakdown (instability) of the atmospheric flows. In the case of the blocking high, ...An attempt has been made to apply Arnold type nonlinear stability criteria to the diagnostic study of the persistence (stability) or breakdown (instability) of the atmospheric flows. In the case of the blocking high, the cut-off low and the zonal flow, the relationships of the geostrophic stream function versus the potential vorticity of the observed atmosphere are analyzed, which indicates that Arnold second type nonlinear stability theorem is more relevant to the observed atmosphere than the first one. For both the stable and unstable zonal flows, Arnold second type nonlinear stability criteria are applied to the diagnosis. The primary results show that our analyses correspond well to the evolution of the atmospheric motions. The synoptically stable zonal flows satisfy Arnol′d second type nonlinear stability criteria; while the synoptically unstable ones violate the nonlinear stability criteria.展开更多
Systematic errors have recently been founded to be distinct in the zonal mean component forecasts, which account for a large portion of the total monthly-mean forecast errors. To overcome the difficulty of numerical m...Systematic errors have recently been founded to be distinct in the zonal mean component forecasts, which account for a large portion of the total monthly-mean forecast errors. To overcome the difficulty of numerical model, the monthly pentad-mean nonlinear dynamic regional prediction models of the zonal mean geopotential height at 200, 300, 500, and 700 hPa based on a large number of historical data (NCEP/NCAR reanalysis data) were constituted by employing the local approximation of the phase space reconstruction theory and nonlinear spatio-temporal series prediction method. The 12-month forecast experiments of 1996 indicated that the results of the nonlinear model are better than those of the persistent, climatic prediction, and T42L9 model either over the high- and mid-latitude areas of the Northern and Southern Hemispheres or the tropical area. The root-mean-square of the monthly-mean height of T42L9 model was considerably decreased with a change of 30.4%, 26.6%, 82.6%, and 39.4%, respectively, over the high- and mid-latitudes of the Northern Hemisphere, over the high- and mid-latitudes of the Southern Hemisphere, over the tropics and over the globe, and also the corresponding anomaly correlation coefficients over the four areas were respectively increased by 0.306-0.312, 0.304-0.429, 0.739-0.746, and 0.360-0.400 (averagely a relative change of 11.0% over the globe) by nonlinear correction after integration, implying that the forecasts given by nonlinear model include more useful information than those of T42L9 model.展开更多
Based on Chen et al. (2006), the scheme of the combination of the pentad-mean zonal height departure nonlinear prediction with the T42L9 model prediction was designed, in which the pentad zonal heights at all the 12...Based on Chen et al. (2006), the scheme of the combination of the pentad-mean zonal height departure nonlinear prediction with the T42L9 model prediction was designed, in which the pentad zonal heights at all the 12-initial-value-input isobar levels from 50 hPa to 1000 hPa except 200, 300, 500, and 700 hPa were derived from nonlinear forecasts of the four levels by means of a good correlation between neighboring levels. Then the above pentad zonal heights at 12 isobar-levels were transformed to the spectrum coefficients of the temperature at each integration step of T42L9 model. At last, the nudging was made. On account of a variety of error accumulation, the pentad zonal components of the monthly height at isobar levels output by T42L9 model were replaced by the corresponding nonlinear results once more when integration was over. Multiple case experiments showed that such combination of two kinds of prediction made an improvement in the wave component as a result of wave-flow nonlinear interaction while reducing the systematical forecast errors. Namely the monthly-mean height anomaly correlation coefficients over the high- and mid-latitudes of the Northern Hemisphere, over the Southern Hemisphere and over the globe increased respectively from 0.249 to 0.347, from 0.286 to 0.387, and from 0.343 to 0.414 (relative changes of 31.5%, 41.0%, and 18.3%). The monthly-mean root-mean-square error (RMSE) of T42L9 model over the three areas was considerably decreased, the relative change over the globe reached 44.2%. The monthly-mean anomaly correlation coeffi- cients of wave 4-9 over the areas were up to 0.392, 0.200, and 0.295, with the relative change of 53.8%, 94.1%, and 61.2%, and correspondingly their RMSEs were decreased respectively with the rate of 8.5%, 6.3%, and 8.1%. At the same time the monthly-mean pattern of parts of cases were presented better.展开更多
The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak.Two toroidally localized p...The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak.Two toroidally localized probe arrays are used to measure the zonal flow during L-H transition and H-L back transition.The energy ratio of the low frequency zonal flow to the total drift wave turbulence is calculated.During ELM-free H mode,the energy ratio is higher than that in L mode,which reveals the important role of zonal flows in regulating turbulence amplitude in L-H transition.展开更多
This paper reviews the theoretical foundations of zonal flow, putting emphasis on the linear response function of plasma to the external flow drive. An extension of the theory is made in order to apply it to helical s...This paper reviews the theoretical foundations of zonal flow, putting emphasis on the linear response function of plasma to the external flow drive. An extension of the theory is made in order to apply it to helical systems and to study the properties of the zonal flow in the low frequency range. Further refinement of the theory is made incorporating the orbital effects of particles more precisely, and the role of neoclassical polarization current is identified.展开更多
Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary mo...Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions.展开更多
A linear response function for zonal flows is obtained by solving the gyro-kinetic equation. This is an extension of a previous work which adopted the method of "integrating along particle orbit" to solve the drift ...A linear response function for zonal flows is obtained by solving the gyro-kinetic equation. This is an extension of a previous work which adopted the method of "integrating along particle orbit" to solve the drift kinetic equation. The formula derived in this paper is used to calculate the dispersion relation of geodesic acoustic mode, which is then compared with that of the gyro-kinetic analytic formula.展开更多
In a tokamak plasma with auxiliary heating by cyclotron waves, a poloidal electric field will be produced, and as a consequence influence the residual zonal flow(RZF) level. The poloidal electric field can also be ind...In a tokamak plasma with auxiliary heating by cyclotron waves, a poloidal electric field will be produced, and as a consequence influence the residual zonal flow(RZF) level. The poloidal electric field can also be induced through biasing electrodes at the edge region of tokamaks.Numerical evaluation for a large aspect ratio circular cross section tokamak for the electron cyclotron wave heating indicates that the RZF level decreases significantly when the poloidal electric field increases. Qualitatively, the ion cyclotron wave heating is able to increase the RZF level. It is difficult to apply the calculation to the real cyclotron wave heating experiments since we need to know factors such as the plasma profiles, the exact power deposition and the cross section geometry, etc. It is possible to use the cyclotron wave heating to control the zonal flow and then to control the turbulence level in tokamak experiments.展开更多
The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at...The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as 10–100 ms-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.展开更多
基金Research Project No.[75-09-01] on medium-range numerical weather forecasts.
文摘 Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelms thermal forcing in maintaining the mean flow in which the internal mechanical forcing associated with horizontal eddy flux of momentum plays the most important roles. Both internal forcing and external forcing are shown to be active and at the first place for the mean flow variations, whereas the forcing-induced mean meridional circulation is passive and secondary. It is also shown that the effects on mean flow of external mechanical forcing are concentrated in the lower troposphere, whereas those due to wave-mean flow interaction are more important in the upper troposphere. These act together and result in the vertically easterly shear in low latitudes and westerly shear in mid-latitudes. This vertical shear of mean flow is to some extent weakened by thermal forcing.
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing.
基金sponsored by the Natural Science Foundation of China(42175078)the Joint Open Project of KLME&CIC-FEMD,NUIST(KLME202207)+1 种基金Special Program for Innovation and Development of China Meteorological Administration(CXFZ2022J030)the Review and Summary Special Project of China Meteorological Administration(FPZJ2023-163).
文摘Due to their huge socio-economic impacts and complex formation causes,extreme and continuous drought events have become the focus and nodus of research in recent years.In the midsummer(July-August)of 2022,a severe drought event occurred in the whole Yangtze River Basin(YRB),China.During that period,the precipitation in the upper,middle and lower reaches of the YRB dropped over 40%less than the 1961-2021 climatic mean,which had never happened previously.Furthermore,the temperature was the highest during 1961-2022.The record-breaking magnitude of less rainfall and high temperature directly led to the continuous development of this extreme drought event.An atmospheric moisture budget analysis revealed that the YRB midsummer rainfall anomaly was dominated by the anomalous powerful vertical moisture advection,which was derived from the strongest descending motion over the whole YRB in the 2022 midsummer during 1981-2022.The western Pacific subtropical high(WPSH)during the midsummer remained stronger,more westward and lasted longer than the climatic mean.As a result,the whole YRB was controlled by a positive geopotential height centre.Further evidence revealed that the anomalous subtropical zonal flow played a crucial role in inducing the extreme descent over the YRB.Moreover,the anomalous upper-tropospheric easterly flow over the YRB in 2022 is the strongest during 1981-2022,modulating the generation of the unprecedented descent anomaly over the YRB.The likelihood that an integrated connection of severe drought in East Asia and flood in West Asia and northwestern South Asia would increase when the extremely strong easterly anomalies in the upper troposphere emerged and induced descending adiabatic flow on the eastern sides of the Tibetan Plateau.The results of this study can provide scientific insights into the predictability of extreme drought events and provide ways to improve predictions.
文摘An attempt has been made to apply Arnold type nonlinear stability criteria to the diagnostic study of the persistence (stability) or breakdown (instability) of the atmospheric flows. In the case of the blocking high, the cut-off low and the zonal flow, the relationships of the geostrophic stream function versus the potential vorticity of the observed atmosphere are analyzed, which indicates that Arnold second type nonlinear stability theorem is more relevant to the observed atmosphere than the first one. For both the stable and unstable zonal flows, Arnold second type nonlinear stability criteria are applied to the diagnosis. The primary results show that our analyses correspond well to the evolution of the atmospheric motions. The synoptically stable zonal flows satisfy Arnol′d second type nonlinear stability criteria; while the synoptically unstable ones violate the nonlinear stability criteria.
基金Supported by the National Natural Science Foundation of China under Grant No. 40175013the National Key Project for Development of Science and Technology (96-908-02-01)the Project of Chinese Academy of Sciences (ZKCX2-SW-210).
文摘Systematic errors have recently been founded to be distinct in the zonal mean component forecasts, which account for a large portion of the total monthly-mean forecast errors. To overcome the difficulty of numerical model, the monthly pentad-mean nonlinear dynamic regional prediction models of the zonal mean geopotential height at 200, 300, 500, and 700 hPa based on a large number of historical data (NCEP/NCAR reanalysis data) were constituted by employing the local approximation of the phase space reconstruction theory and nonlinear spatio-temporal series prediction method. The 12-month forecast experiments of 1996 indicated that the results of the nonlinear model are better than those of the persistent, climatic prediction, and T42L9 model either over the high- and mid-latitude areas of the Northern and Southern Hemispheres or the tropical area. The root-mean-square of the monthly-mean height of T42L9 model was considerably decreased with a change of 30.4%, 26.6%, 82.6%, and 39.4%, respectively, over the high- and mid-latitudes of the Northern Hemisphere, over the high- and mid-latitudes of the Southern Hemisphere, over the tropics and over the globe, and also the corresponding anomaly correlation coefficients over the four areas were respectively increased by 0.306-0.312, 0.304-0.429, 0.739-0.746, and 0.360-0.400 (averagely a relative change of 11.0% over the globe) by nonlinear correction after integration, implying that the forecasts given by nonlinear model include more useful information than those of T42L9 model.
基金Supported by the National Natural Science Foundation of China under Grant No. 40175013the National Key Project for Development of Science and Technology (96-908-02-01)the Project of Chinese Academy of Sciences (ZKCX2-SW-210).
文摘Based on Chen et al. (2006), the scheme of the combination of the pentad-mean zonal height departure nonlinear prediction with the T42L9 model prediction was designed, in which the pentad zonal heights at all the 12-initial-value-input isobar levels from 50 hPa to 1000 hPa except 200, 300, 500, and 700 hPa were derived from nonlinear forecasts of the four levels by means of a good correlation between neighboring levels. Then the above pentad zonal heights at 12 isobar-levels were transformed to the spectrum coefficients of the temperature at each integration step of T42L9 model. At last, the nudging was made. On account of a variety of error accumulation, the pentad zonal components of the monthly height at isobar levels output by T42L9 model were replaced by the corresponding nonlinear results once more when integration was over. Multiple case experiments showed that such combination of two kinds of prediction made an improvement in the wave component as a result of wave-flow nonlinear interaction while reducing the systematical forecast errors. Namely the monthly-mean height anomaly correlation coefficients over the high- and mid-latitudes of the Northern Hemisphere, over the Southern Hemisphere and over the globe increased respectively from 0.249 to 0.347, from 0.286 to 0.387, and from 0.343 to 0.414 (relative changes of 31.5%, 41.0%, and 18.3%). The monthly-mean root-mean-square error (RMSE) of T42L9 model over the three areas was considerably decreased, the relative change over the globe reached 44.2%. The monthly-mean anomaly correlation coeffi- cients of wave 4-9 over the areas were up to 0.392, 0.200, and 0.295, with the relative change of 53.8%, 94.1%, and 61.2%, and correspondingly their RMSEs were decreased respectively with the rate of 8.5%, 6.3%, and 8.1%. At the same time the monthly-mean pattern of parts of cases were presented better.
基金the EAST team for their support during the experimentssupported by the National Natural Science Foundation of China with Grant Nos.10990210,10990211,11375188,11105144,and 11375053+1 种基金the National Magnetic Confinement Fusion Science Program of China under Contracts Nos.2013GB106002, 2013GB106003the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology with Grant No.2014FXCX003
文摘The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak.Two toroidally localized probe arrays are used to measure the zonal flow during L-H transition and H-L back transition.The energy ratio of the low frequency zonal flow to the total drift wave turbulence is calculated.During ELM-free H mode,the energy ratio is higher than that in L mode,which reveals the important role of zonal flows in regulating turbulence amplitude in L-H transition.
基金supported in part by the JSPS-CAS Core University Program in the field of plasma and nuclear fusion
文摘This paper reviews the theoretical foundations of zonal flow, putting emphasis on the linear response function of plasma to the external flow drive. An extension of the theory is made in order to apply it to helical systems and to study the properties of the zonal flow in the low frequency range. Further refinement of the theory is made incorporating the orbital effects of particles more precisely, and the role of neoclassical polarization current is identified.
基金supported by National Natural Science Foundation of China (No. 10775137)by the Ministry of Science and Technology of China (No. 2009CB105001)partly by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions.
基金partially supported by the JSPS-CAS Core-University program in the field of 'Plasma and Nuclear Fusion'
文摘A linear response function for zonal flows is obtained by solving the gyro-kinetic equation. This is an extension of a previous work which adopted the method of "integrating along particle orbit" to solve the drift kinetic equation. The formula derived in this paper is used to calculate the dispersion relation of geodesic acoustic mode, which is then compared with that of the gyro-kinetic analytic formula.
基金supported by National Natural Science Foundation of China (No. 11675222)
文摘In a tokamak plasma with auxiliary heating by cyclotron waves, a poloidal electric field will be produced, and as a consequence influence the residual zonal flow(RZF) level. The poloidal electric field can also be induced through biasing electrodes at the edge region of tokamaks.Numerical evaluation for a large aspect ratio circular cross section tokamak for the electron cyclotron wave heating indicates that the RZF level decreases significantly when the poloidal electric field increases. Qualitatively, the ion cyclotron wave heating is able to increase the RZF level. It is difficult to apply the calculation to the real cyclotron wave heating experiments since we need to know factors such as the plasma profiles, the exact power deposition and the cross section geometry, etc. It is possible to use the cyclotron wave heating to control the zonal flow and then to control the turbulence level in tokamak experiments.
基金supported by National Natural Science Foundation of China(Nos.12075057,11775069,11320101005,51821005 and 11875020)Jiangxi Provincial Natural Science Foundation(No.20202ACBL201002)+1 种基金Doctoral Foundation(Nos.DHBK2017134 and DHBK 2018059)Grant-in-Aid for Scientific Research of JSPS(Nos.15H02155,15H02335,16H02442)。
文摘The toroidal component of the velocity for geodesic acoustic modes(GAMs)is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as 10–100 ms-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.