The paper presented accelerated ageing test results of a durability study on ortho-phthalic anhydride-type unsaturated polyester resin (191#) and its glass-fiber reinforcement polyester composites (GFRPC). The sam...The paper presented accelerated ageing test results of a durability study on ortho-phthalic anhydride-type unsaturated polyester resin (191#) and its glass-fiber reinforcement polyester composites (GFRPC). The samples were exposed in an artificial xenon arc lamp ageing cell or a thermo-oxidative ageing cell. Morphology and gloss of the specimens were investigated by using a microscope and a gloss-meter, respectively. The tensile strength, bending strength and inter-laminar shear strength (ILSS) of GFRPC were tested before and after exposure, and were considered to evaluate the durability performance of this material. The polyester resin was analyzed by fourier transform infrared (FT-IR) spectroscopy. The results showed that the glossiness of the specimens got worse and some cracks appeared on their surface during the course of ageing, the tensile strength and bending strengths of the specimens first increased and then decreased. The ILSS of the composites decreased after they were aged in the xenon arc lamp cell, but increased while they were aged in the thermo-oxidative cell. The changes of these trends become more obvious during ageing in the xenon arc lamp cell, so the main influencing factor leading to the failure of this material is UV irradiation.展开更多
YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, in...YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, infrared absorption spectrum and glass transition temperature (Tg) of PMMA exposed in xenon arc lamp for different durations are tested and characterized by universal testing machine, optical haze instrument, scanning electronic microscopy (SEM), gel permeation chromatograph (GPC), fourier transform infrared spectrometer (FT-IR) and differential scanning calorimetry (DSC), so as to comprehensively analyze the influence of xenon arc lamp irradiation on the performance of PMMA. The results reveal that under the effect of 1620 hours xenon arc lamp irradiation and periodic spraying water, the light transmittance and glass transition temperature do not change significantly, and no new chemical group is produced. After irradiated 360 hours, tiny cracks occur in the surface of PMMA, indicating that they occur at a certain degree of degradation, meanwhile, the main chain may be broken and the relative molecular mass of surface of the material decreases. After exposure of 720 hours, the tensile strength decreases about 30%.展开更多
基金supported by the National Natural Science Foundation of China (No.50533060)
文摘The paper presented accelerated ageing test results of a durability study on ortho-phthalic anhydride-type unsaturated polyester resin (191#) and its glass-fiber reinforcement polyester composites (GFRPC). The samples were exposed in an artificial xenon arc lamp ageing cell or a thermo-oxidative ageing cell. Morphology and gloss of the specimens were investigated by using a microscope and a gloss-meter, respectively. The tensile strength, bending strength and inter-laminar shear strength (ILSS) of GFRPC were tested before and after exposure, and were considered to evaluate the durability performance of this material. The polyester resin was analyzed by fourier transform infrared (FT-IR) spectroscopy. The results showed that the glossiness of the specimens got worse and some cracks appeared on their surface during the course of ageing, the tensile strength and bending strengths of the specimens first increased and then decreased. The ILSS of the composites decreased after they were aged in the xenon arc lamp cell, but increased while they were aged in the thermo-oxidative cell. The changes of these trends become more obvious during ageing in the xenon arc lamp cell, so the main influencing factor leading to the failure of this material is UV irradiation.
文摘YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, infrared absorption spectrum and glass transition temperature (Tg) of PMMA exposed in xenon arc lamp for different durations are tested and characterized by universal testing machine, optical haze instrument, scanning electronic microscopy (SEM), gel permeation chromatograph (GPC), fourier transform infrared spectrometer (FT-IR) and differential scanning calorimetry (DSC), so as to comprehensively analyze the influence of xenon arc lamp irradiation on the performance of PMMA. The results reveal that under the effect of 1620 hours xenon arc lamp irradiation and periodic spraying water, the light transmittance and glass transition temperature do not change significantly, and no new chemical group is produced. After irradiated 360 hours, tiny cracks occur in the surface of PMMA, indicating that they occur at a certain degree of degradation, meanwhile, the main chain may be broken and the relative molecular mass of surface of the material decreases. After exposure of 720 hours, the tensile strength decreases about 30%.