Using the first-principles approach based upon the density functional theory (DFT), we have studied the electronic structure of wurtzite ZnO systems doped with C at different sites. When Zn is substituted by C, the ...Using the first-principles approach based upon the density functional theory (DFT), we have studied the electronic structure of wurtzite ZnO systems doped with C at different sites. When Zn is substituted by C, the system turns from a direct band gap semiconductor into an indirect band gap semiconductor, and donor levels are formed. When O is substituted by C, acceptor levels are formed near the top of the valence band, and thus a p-type transformation of the system is achieved. When the two kinds of substitution coexist, the acceptor levels are compensated for all cases, which is unfavorable for the p-type transformation of the system.展开更多
In this study,we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy.Detailed structural characterizations suggest that wurtzite structured InAs nanosheets,with features of ...In this study,we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy.Detailed structural characterizations suggest that wurtzite structured InAs nanosheets,with features of extensive{1120}surfaces,grown along the<1102>direction and adopted{0001}nanosheet/catalyst interfaces,are initiated from wurtzite structured[0001]nanowires as the inclined epitaxial growth due to relatively higher In concentrations in Au catalysts,and grown from these inclined nanostructures through catalyst-induced axial growth and their enhanced lateral growth under the high growth temperature.Based on the facts that the nanosheets contain large low energy{1120}surfaces and{0001}nanosheet/catalyst interfaces,the growth of our nanosheets is a thermodynamically driven process.This study provides new insights into fabricating free-standing Ⅲ-Ⅴ nanosheets for their applications in future nanoscale devices.展开更多
Samples of chromium doped ZnO were synthesized using co-precipitation technique at room temperature. Structural and optical properties of Cr doped ZnO samples were investigated by X-ray diffraction technique (XRD and ...Samples of chromium doped ZnO were synthesized using co-precipitation technique at room temperature. Structural and optical properties of Cr doped ZnO samples were investigated by X-ray diffraction technique (XRD and UV-Visible spectroscopy (UV-Vis) respectively. X-ray diffraction (XRD) patterns confirm that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions go to the regular Zn sites in the ZnO crystal structure. The lattice constants were calculated using X-ray diffraction data and it is found that lattice parameters decrease with increasing Cr content. The average grain size was calculated using Scherrer’s formula for pure and Cr doped ZnO samples and it is observed that grain size is in the range 11 to17 nm. Band gap of Zn1–xCrxO samples has been evaluated using UV-Vis spectrometer. It is found that the band gap decreases as Cr increases;it is attributed to the s-d and p interactions and the smaller average grain size. It indicates that incorporation of Cr ions into the ZnO matrix. The chemical species of the grown crystals were identified by Fourier transform infrared spectroscopy (FTIR). From FTIR spectra it is observed that IR peaks corresponding to the Zn-O bands. Such results are presented in this paper quantitatively and qualitatively.展开更多
In order to investigate the effect of Ag doping(ZnS(Ag)) and Zn vacancy(V_(Zn)) on the alpha particle detection performance of wurtzite(WZ) ZnS as a scintillation cell component, the electronic structure and optical p...In order to investigate the effect of Ag doping(ZnS(Ag)) and Zn vacancy(V_(Zn)) on the alpha particle detection performance of wurtzite(WZ) ZnS as a scintillation cell component, the electronic structure and optical properties of ZnS, ZnS(Ag), and V_(Zn)were studied by firstprinciple calculation based on the density functional theory. The results show that the band gaps of ZnS, ZnS(Ag),and V_(Zn)are 2.17, 1.79, and 2.37 eV, respectively. Both ZnS(Ag) and V_(Zn)enhance the absorption and reflection of the low energy photons. A specific energy, about 2.9 eV,leading to decrease of detection efficiency is observed. The results indicate that Ag doping has a complex effect on the detection performance. It is beneficial to produce more visible light photons than pure WZ ZnS when exposed to the same amount of radiation, while the increase of the absorption to visible light photons weakens the detection performance. Zn vacancy has negative effect on the detection performance. If we want to improve the detection performance of WZ ZnS, Ag doping will be a good way,but we should reduce the absorption to visible light photons and control the number of Zn vacancy rigorously.展开更多
We have investigated individual bulk-like wires of wurtzite InP using photoluminescence, photoluminescence excitation spectroscopy and transmission electron microscopy. Using two different methods we find that the top...We have investigated individual bulk-like wires of wurtzite InP using photoluminescence, photoluminescence excitation spectroscopy and transmission electron microscopy. Using two different methods we find that the top of the valence band is split, as expected theoretically. This splitting of the valence band is peculiar to wurtzite InP and does not occur in zinc blende InP. We find the energy difference between the two bands to be 40 meV.展开更多
基金supported by the National Natural Science Foundation of China(No.10775088)the Key Program of Theoretical Physics of Shandong Province
文摘Using the first-principles approach based upon the density functional theory (DFT), we have studied the electronic structure of wurtzite ZnO systems doped with C at different sites. When Zn is substituted by C, the system turns from a direct band gap semiconductor into an indirect band gap semiconductor, and donor levels are formed. When O is substituted by C, acceptor levels are formed near the top of the valence band, and thus a p-type transformation of the system is achieved. When the two kinds of substitution coexist, the acceptor levels are compensated for all cases, which is unfavorable for the p-type transformation of the system.
基金the Australian Research Council,the National Key R&D Program of China(No.2016YFB0402401)the National Natural Science Foundation of China(Nos.11634009 and 11774016)+1 种基金the Key Programs of Frontier Science of the Chinese Academy of Sciences(No.QYZDJ-SSW-JSC007)The Australian Microscopy&Microanalysis Research Facility is also gratefully acknowledged for providing microscopy facilities for this study.
文摘In this study,we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy.Detailed structural characterizations suggest that wurtzite structured InAs nanosheets,with features of extensive{1120}surfaces,grown along the<1102>direction and adopted{0001}nanosheet/catalyst interfaces,are initiated from wurtzite structured[0001]nanowires as the inclined epitaxial growth due to relatively higher In concentrations in Au catalysts,and grown from these inclined nanostructures through catalyst-induced axial growth and their enhanced lateral growth under the high growth temperature.Based on the facts that the nanosheets contain large low energy{1120}surfaces and{0001}nanosheet/catalyst interfaces,the growth of our nanosheets is a thermodynamically driven process.This study provides new insights into fabricating free-standing Ⅲ-Ⅴ nanosheets for their applications in future nanoscale devices.
文摘Samples of chromium doped ZnO were synthesized using co-precipitation technique at room temperature. Structural and optical properties of Cr doped ZnO samples were investigated by X-ray diffraction technique (XRD and UV-Visible spectroscopy (UV-Vis) respectively. X-ray diffraction (XRD) patterns confirm that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions go to the regular Zn sites in the ZnO crystal structure. The lattice constants were calculated using X-ray diffraction data and it is found that lattice parameters decrease with increasing Cr content. The average grain size was calculated using Scherrer’s formula for pure and Cr doped ZnO samples and it is observed that grain size is in the range 11 to17 nm. Band gap of Zn1–xCrxO samples has been evaluated using UV-Vis spectrometer. It is found that the band gap decreases as Cr increases;it is attributed to the s-d and p interactions and the smaller average grain size. It indicates that incorporation of Cr ions into the ZnO matrix. The chemical species of the grown crystals were identified by Fourier transform infrared spectroscopy (FTIR). From FTIR spectra it is observed that IR peaks corresponding to the Zn-O bands. Such results are presented in this paper quantitatively and qualitatively.
基金supported by the National Natural Science Foundation of China(Nos.11275071 and 11305061)the Fundamental Research Funds for the Central Universities(Nos.2014MS53 and 2014ZZD09)the Student’s Platform for Innovation and Entrepreneurship Training Program of North China Electric Power University(No.15129)
文摘In order to investigate the effect of Ag doping(ZnS(Ag)) and Zn vacancy(V_(Zn)) on the alpha particle detection performance of wurtzite(WZ) ZnS as a scintillation cell component, the electronic structure and optical properties of ZnS, ZnS(Ag), and V_(Zn)were studied by firstprinciple calculation based on the density functional theory. The results show that the band gaps of ZnS, ZnS(Ag),and V_(Zn)are 2.17, 1.79, and 2.37 eV, respectively. Both ZnS(Ag) and V_(Zn)enhance the absorption and reflection of the low energy photons. A specific energy, about 2.9 eV,leading to decrease of detection efficiency is observed. The results indicate that Ag doping has a complex effect on the detection performance. It is beneficial to produce more visible light photons than pure WZ ZnS when exposed to the same amount of radiation, while the increase of the absorption to visible light photons weakens the detection performance. Zn vacancy has negative effect on the detection performance. If we want to improve the detection performance of WZ ZnS, Ag doping will be a good way,but we should reduce the absorption to visible light photons and control the number of Zn vacancy rigorously.
文摘We have investigated individual bulk-like wires of wurtzite InP using photoluminescence, photoluminescence excitation spectroscopy and transmission electron microscopy. Using two different methods we find that the top of the valence band is split, as expected theoretically. This splitting of the valence band is peculiar to wurtzite InP and does not occur in zinc blende InP. We find the energy difference between the two bands to be 40 meV.