This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In ex...This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In experiment,the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies.By the FEA approach,a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage.The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties.In addition,the stress distribution,fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.展开更多
This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were co...This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were conducted on woven carbon fibre lamina3238 A/CF3052 and woven glass fibre lamina 3238 A/EW250 F,and the time-dependent LVI contact force and deflection curves,static TAI and CAI load versus displacement curves were determined and discussed.A modified progressive damage model was presented for explicit dynamic LVI and implicit static TAI and CAI analysis by using basic material properties and geometrical dimensions,and progressive damage LVI,TAI and CAI behaviors of woven composite laminates were simulated,demonstrating a good correlation between simulations and experiments.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11072058 and 11272087)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201056)+2 种基金Shanghai Rising-Star Program(Grant No.11QH1400100)the Fundamental Research Funds for the Central Universities of ChinaSpecial Excellent Ph.D International Visit Program by Donghua University(Grant No.102552011003)
文摘This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In experiment,the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies.By the FEA approach,a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage.The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties.In addition,the stress distribution,fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.
基金the National Natural Science Foundation of China(No.51875021)。
文摘This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were conducted on woven carbon fibre lamina3238 A/CF3052 and woven glass fibre lamina 3238 A/EW250 F,and the time-dependent LVI contact force and deflection curves,static TAI and CAI load versus displacement curves were determined and discussed.A modified progressive damage model was presented for explicit dynamic LVI and implicit static TAI and CAI analysis by using basic material properties and geometrical dimensions,and progressive damage LVI,TAI and CAI behaviors of woven composite laminates were simulated,demonstrating a good correlation between simulations and experiments.