A feature extraction, which means extracting the representative words from a text, is an important issue in text mining field. This paper presented a new Apriori and N-gram based Chinese text feature extraction method...A feature extraction, which means extracting the representative words from a text, is an important issue in text mining field. This paper presented a new Apriori and N-gram based Chinese text feature extraction method, and analyzed its correctness and performance. Our method solves the question that the exist extraction methods cannot find the frequent words with arbitrary length in Chinese texts. The experimental results show this method is feasible.展开更多
Finding out out-of-vocabulary words is an urgent and difficult task in Chinese words segmentation. To avoid the defect causing by offline training in the traditional method, the paper proposes an improved prediction b...Finding out out-of-vocabulary words is an urgent and difficult task in Chinese words segmentation. To avoid the defect causing by offline training in the traditional method, the paper proposes an improved prediction by partical match (PPM) segmenting algorithm for Chinese words based on extracting local context information, which adds the context information of the testing text into the local PPM statistical model so as to guide the detection of new words. The algorithm focuses on the process of online segmentatien and new word detection which achieves a good effect in the close or opening test, and outperforms some well-known Chinese segmentation system to a certain extent.展开更多
文摘A feature extraction, which means extracting the representative words from a text, is an important issue in text mining field. This paper presented a new Apriori and N-gram based Chinese text feature extraction method, and analyzed its correctness and performance. Our method solves the question that the exist extraction methods cannot find the frequent words with arbitrary length in Chinese texts. The experimental results show this method is feasible.
基金National Natural Science Foundation of China ( No.60903129)National High Technology Research and Development Program of China (No.2006AA010107, No.2006AA010108)Foundation of Fujian Province of China (No.2008F3105)
文摘Finding out out-of-vocabulary words is an urgent and difficult task in Chinese words segmentation. To avoid the defect causing by offline training in the traditional method, the paper proposes an improved prediction by partical match (PPM) segmenting algorithm for Chinese words based on extracting local context information, which adds the context information of the testing text into the local PPM statistical model so as to guide the detection of new words. The algorithm focuses on the process of online segmentatien and new word detection which achieves a good effect in the close or opening test, and outperforms some well-known Chinese segmentation system to a certain extent.