The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between con...The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between contextual words and the ambiguous word by using statistical methodology and taking the contextual words of a certain number beside the ambiguous word according to (-M,+N).The experiment adopts triple-layer BP Neural Network model and proves how the size of a training set and the value of Mand Naffect the performance of the Neural Network Model. The experimental objects are six pseudowords owning three word-senses constructed according to certain principles. The tested accuracy of our approach on a closed-corpus reaches 90.31%, and 89.62% on an open-corpus. The experiment proves that the Neural Network Model has a good performance on Word Sense Disambiguation.展开更多
对领域知识挖掘利用的充分与否,直接影响到面向特定领域的词义消歧(Word sense disambiguation,WSD)的性能.本文提出一种基于领域知识的图模型词义消歧方法,该方法充分挖掘领域知识,为目标领域收集文本领域关联词作为文本领域知识,为目...对领域知识挖掘利用的充分与否,直接影响到面向特定领域的词义消歧(Word sense disambiguation,WSD)的性能.本文提出一种基于领域知识的图模型词义消歧方法,该方法充分挖掘领域知识,为目标领域收集文本领域关联词作为文本领域知识,为目标歧义词的各个词义获取词义领域标注作为词义领域知识;利用文本领域关联词和句子上下文词构建消歧图,并根据词义领域知识对消歧图进行调整;使用改进的图评分方法对消歧图的各个词义结点的重要度进行评分,选择正确的词义.该方法能有效地将领域知识整合到图模型中,在Koeling数据集上,取得了同类研究的最佳消歧效果.本文亦对多种图模型评分方法做了改进,进行了详细的对比实验研究.展开更多
文摘The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between contextual words and the ambiguous word by using statistical methodology and taking the contextual words of a certain number beside the ambiguous word according to (-M,+N).The experiment adopts triple-layer BP Neural Network model and proves how the size of a training set and the value of Mand Naffect the performance of the Neural Network Model. The experimental objects are six pseudowords owning three word-senses constructed according to certain principles. The tested accuracy of our approach on a closed-corpus reaches 90.31%, and 89.62% on an open-corpus. The experiment proves that the Neural Network Model has a good performance on Word Sense Disambiguation.
文摘对领域知识挖掘利用的充分与否,直接影响到面向特定领域的词义消歧(Word sense disambiguation,WSD)的性能.本文提出一种基于领域知识的图模型词义消歧方法,该方法充分挖掘领域知识,为目标领域收集文本领域关联词作为文本领域知识,为目标歧义词的各个词义获取词义领域标注作为词义领域知识;利用文本领域关联词和句子上下文词构建消歧图,并根据词义领域知识对消歧图进行调整;使用改进的图评分方法对消歧图的各个词义结点的重要度进行评分,选择正确的词义.该方法能有效地将领域知识整合到图模型中,在Koeling数据集上,取得了同类研究的最佳消歧效果.本文亦对多种图模型评分方法做了改进,进行了详细的对比实验研究.