The objective of this study is to experimentally visualize traveling vortices in the boundary layer on a rotating disk under orbital motion. The orbital radius is half of the disk’s diameter (200 mm) and the maximum ...The objective of this study is to experimentally visualize traveling vortices in the boundary layer on a rotating disk under orbital motion. The orbital radius is half of the disk’s diameter (200 mm) and the maximum speed of orbital motion is 500 revolutions per minute. The Reynolds number in the pure-rotation case is 2.77 × 105. The characteristics of two types of traveling vortices are visualized by a smoke-wire method. The first type is transition vortices. In the pure-rotation case, they arise at circumferentially equal intervals, and are not traveling but stationary relative to the rotational disk. The result of visualization of this type shows that the intervals between transient vortices change in a circumferential direction, or in an orbital radial direction, on the rotating disk under orbital motion. The second type is new arc-shaped vortices that correspond to low-frequency disturbances. As orbital speed increases, the radial traveling velocities of the low-frequency disturbances increase and the intervals between low-frequency disturbances decrease.展开更多
This experiment used a parallel array of hot wire probes to simultaneously measure the temperature and velocity fields in the non-isothermal turbulent boundary layer of a rotating straight channel. The Reynolds number...This experiment used a parallel array of hot wire probes to simultaneously measure the temperature and velocity fields in the non-isothermal turbulent boundary layer of a rotating straight channel. The Reynolds numbers are 15,000 and 25,000, respectively. The rotation numbers are 0, 0.07, 0.14, 0.21 and 0.28, respectively. The purpose of this study is to calculate the turbulent Prandtl number in a rotating non-isothermal turbulent boundary layer. Due to the difficulty in measuring local turbulent Prandtl numbers, this study focuses on the average turbulent Prandtl numbers in the logarithmic region instead. Under static conditions, this value is taken as 0.9 normally. This research finds that rotation conditions can affect the turbulent Prandtl number by affecting the properties of velocity and temperature boundary layers. The change range of the turbulent Prandtl number is roughly 0.6–1.1. The influence of the leading side is greater than that of the trailing side, especially at high rotation numbers. This can provide validation and guidance for numerical simulation. Other information within the turbulent boundary layer is also discussed. It is hoped that this study would enhance our understanding of the mechanism of turbulent flow in the turbulent layer at rotating conditions.展开更多
The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The...The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The results show that lowangle boundaries frequency increases and high angle boundaries frequency decreases with strain increasing when the strain is low.Athigh strain,most of grain and dislocation boundaries are parallel to the drawn direction and low angle boundaries frequencydecreases and high angle boundaries frequency increases with strain increasing.The decrease of deformation temperature leads tomicrostructure finer and low angle boundaries frequency increasing.Texture analysis indicates that volume fraction of complextexture component decreases with strain increasing and a mixture of?111?and?100?fiber texture forms at high strain.?111?is stableat low strains but?100?becomes stable at high strain.The decrease of temperature can enhance the stability of?111?orientation athigh strain.展开更多
The present study investigates wake-induced bypass transition of boundary layers on a flat plate subjected to favorable and adverse pressure gradients. The aim is to exploit unsteady effects in order to design an aft-...The present study investigates wake-induced bypass transition of boundary layers on a flat plate subjected to favorable and adverse pressure gradients. The aim is to exploit unsteady effects in order to design an aft-loaded turbine blade without increasing the profile loss, as has been achieved for low pressure turbine blades. First of all, this fundamental study is to reveal the effect of the Strouhal number, which changed by using different numbers of wake generating bars. Detailed boundary layer measurements were conducted using two hot-wire probes. A passage-contouring device was employed to generate a pressure gradient on the test model, which was typical to that generated by an aft-loaded turbine blade. A spoked-wheel-type wake generator was used to create periodic wakes in front of the flat plate. It was found that the wake passage induces a significant change in the flow structure downstream of the flow acceleration region.展开更多
Flow behavior in the Thermal Engineering and Applied Hydraulics Laboratory (LABINTHAP) wind tunnel was investigated by measuring the velocity profiles, turbulence intensity and wall effects with a hot wire anemometer....Flow behavior in the Thermal Engineering and Applied Hydraulics Laboratory (LABINTHAP) wind tunnel was investigated by measuring the velocity profiles, turbulence intensity and wall effects with a hot wire anemometer. Measurements were carried out under wind speeds 5, 15 and 30 m/s in planes located at 1.8, 2.6 and 3.4 m from flow inlet to the test section. The flow showed a good quality with a velocity variation less than 1%, turbulence intensity lower than 4% and the wall effects allow having an excellent work area in the test section for the velocities evaluated.展开更多
Steel wire ropes have wide application in a variety of engineering fields such as ocean engineering and civil engineering.The stress calculation for steel wire ropes is of crucial importance when conducting strength a...Steel wire ropes have wide application in a variety of engineering fields such as ocean engineering and civil engineering.The stress calculation for steel wire ropes is of crucial importance when conducting strength and fatigue analyses.In this study,we performed a finite element analysis of single-strand steel wire ropes.For the geometric modeling,we used an analytic geometry of space method.We established helical line equations and used the coordinates of the contact points.The finite-element model was simplified using the periodic law.Periodic boundary conditions were used to simulate a wire strand of infinite length under tensile strain,for which we calculated the cross-sectional stresses and inner forces.The results showed that bending and torsion moments emerged when the wire strand was under tensile load.In some cases,the bending stress reached 18%of the tensile stress,and the torsion stress reached 29%of the tensile stress,which means that the total stress was higher than the nominal stress.Whereas in ear-lier studies,a conservative prediction of nominal stress was not possible,the results of our strength and fatigue analyses were more conservative.展开更多
文摘The objective of this study is to experimentally visualize traveling vortices in the boundary layer on a rotating disk under orbital motion. The orbital radius is half of the disk’s diameter (200 mm) and the maximum speed of orbital motion is 500 revolutions per minute. The Reynolds number in the pure-rotation case is 2.77 × 105. The characteristics of two types of traveling vortices are visualized by a smoke-wire method. The first type is transition vortices. In the pure-rotation case, they arise at circumferentially equal intervals, and are not traveling but stationary relative to the rotational disk. The result of visualization of this type shows that the intervals between transient vortices change in a circumferential direction, or in an orbital radial direction, on the rotating disk under orbital motion. The second type is new arc-shaped vortices that correspond to low-frequency disturbances. As orbital speed increases, the radial traveling velocities of the low-frequency disturbances increase and the intervals between low-frequency disturbances decrease.
基金the National Natural Science Foundation of China(No.51906008,No.51822602)National Science and Technology Major Project(2017-Ⅲ-0003-0027)the Fundamental Research Funds for the Central Universities(No.YWF-20-BJ-J-822).
文摘This experiment used a parallel array of hot wire probes to simultaneously measure the temperature and velocity fields in the non-isothermal turbulent boundary layer of a rotating straight channel. The Reynolds numbers are 15,000 and 25,000, respectively. The rotation numbers are 0, 0.07, 0.14, 0.21 and 0.28, respectively. The purpose of this study is to calculate the turbulent Prandtl number in a rotating non-isothermal turbulent boundary layer. Due to the difficulty in measuring local turbulent Prandtl numbers, this study focuses on the average turbulent Prandtl numbers in the logarithmic region instead. Under static conditions, this value is taken as 0.9 normally. This research finds that rotation conditions can affect the turbulent Prandtl number by affecting the properties of velocity and temperature boundary layers. The change range of the turbulent Prandtl number is roughly 0.6–1.1. The influence of the leading side is greater than that of the trailing side, especially at high rotation numbers. This can provide validation and guidance for numerical simulation. Other information within the turbulent boundary layer is also discussed. It is hoped that this study would enhance our understanding of the mechanism of turbulent flow in the turbulent layer at rotating conditions.
基金Projects(51471123,51171135)supported by the National Natural Science Foundation of ChinaProjects(2012K07-08,2013KJXX-61)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2013JC14)supported by the Industrialization Program of Shaanxi Province,China
文摘The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The results show that lowangle boundaries frequency increases and high angle boundaries frequency decreases with strain increasing when the strain is low.Athigh strain,most of grain and dislocation boundaries are parallel to the drawn direction and low angle boundaries frequencydecreases and high angle boundaries frequency increases with strain increasing.The decrease of deformation temperature leads tomicrostructure finer and low angle boundaries frequency increasing.Texture analysis indicates that volume fraction of complextexture component decreases with strain increasing and a mixture of?111?and?100?fiber texture forms at high strain.?111?is stableat low strains but?100?becomes stable at high strain.The decrease of temperature can enhance the stability of?111?orientation athigh strain.
文摘The present study investigates wake-induced bypass transition of boundary layers on a flat plate subjected to favorable and adverse pressure gradients. The aim is to exploit unsteady effects in order to design an aft-loaded turbine blade without increasing the profile loss, as has been achieved for low pressure turbine blades. First of all, this fundamental study is to reveal the effect of the Strouhal number, which changed by using different numbers of wake generating bars. Detailed boundary layer measurements were conducted using two hot-wire probes. A passage-contouring device was employed to generate a pressure gradient on the test model, which was typical to that generated by an aft-loaded turbine blade. A spoked-wheel-type wake generator was used to create periodic wakes in front of the flat plate. It was found that the wake passage induces a significant change in the flow structure downstream of the flow acceleration region.
文摘Flow behavior in the Thermal Engineering and Applied Hydraulics Laboratory (LABINTHAP) wind tunnel was investigated by measuring the velocity profiles, turbulence intensity and wall effects with a hot wire anemometer. Measurements were carried out under wind speeds 5, 15 and 30 m/s in planes located at 1.8, 2.6 and 3.4 m from flow inlet to the test section. The flow showed a good quality with a velocity variation less than 1%, turbulence intensity lower than 4% and the wall effects allow having an excellent work area in the test section for the velocities evaluated.
基金funded by the National Natural Science Foundation of China(No.51879188)the Key R&D Project of Hebei Province(No.1827350D).
文摘Steel wire ropes have wide application in a variety of engineering fields such as ocean engineering and civil engineering.The stress calculation for steel wire ropes is of crucial importance when conducting strength and fatigue analyses.In this study,we performed a finite element analysis of single-strand steel wire ropes.For the geometric modeling,we used an analytic geometry of space method.We established helical line equations and used the coordinates of the contact points.The finite-element model was simplified using the periodic law.Periodic boundary conditions were used to simulate a wire strand of infinite length under tensile strain,for which we calculated the cross-sectional stresses and inner forces.The results showed that bending and torsion moments emerged when the wire strand was under tensile load.In some cases,the bending stress reached 18%of the tensile stress,and the torsion stress reached 29%of the tensile stress,which means that the total stress was higher than the nominal stress.Whereas in ear-lier studies,a conservative prediction of nominal stress was not possible,the results of our strength and fatigue analyses were more conservative.