In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we ...In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we give the compact expressions of Wigner function, which are related to single-variable Hermite polynomials. Especially, we compare their nonclassicality in terms of Mandel Q-factor and the negativity of Wigner function.展开更多
This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function,...This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function, and tomogram. It first calculates the normalization factor of PSSVS related to Legendre polynomial. After deriving the normally ordered density Operator of PSSVS in dissipative channel, one obtains the explicit analytical expressions of time evolution of PSSVS's statistical distribution function. It finds that these statistical distributions loss their non-Gaussian nature and become Gaussian at last in the dissipative environment as expected.展开更多
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function ...The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state d...A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter,catalyzed photon number and squeezing parameter.We then analyze the nonclassical properties by examining the photon number distribution,photocount distribution and partial negativity of the Wigner function.Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter,catalyzed photon number and squeezing parameter.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11047133)the Natural Science Foundation of Jiangxi Province of China (Grant No.2010GQW0027)+1 种基金the Key Program Foundation of Ministry of Education of China (Grant No.210115)the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos.GJJ10097 and GJJ11390)
文摘In this paper, we introduce photon-added and photon-subtracted squeezed vacuum state (PASV and PSSV) and obtain their normalized factors, which have the similar forms involved in Lengendre polynomials. Moreover, we give the compact expressions of Wigner function, which are related to single-variable Hermite polynomials. Especially, we compare their nonclassicality in terms of Mandel Q-factor and the negativity of Wigner function.
基金supported by the National Natural Science Foundation of China (Grant No. 10775097)the Key Program Foundation of the Ministry of Education of China (Grant No. 210115)the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097)
文摘This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function, and tomogram. It first calculates the normalization factor of PSSVS related to Legendre polynomial. After deriving the normally ordered density Operator of PSSVS in dissipative channel, one obtains the explicit analytical expressions of time evolution of PSSVS's statistical distribution function. It finds that these statistical distributions loss their non-Gaussian nature and become Gaussian at last in the dissipative environment as expected.
基金Supported by National Natural Science Foundation of China (10875053,10447005)Open Topic of State Key Laboratory for Superlattices and Microstructures (CHJG200902)Scientific Research Project in Shaanxi Province (2009K01-54)
文摘The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
基金supported by the National Natural Science Foundation of China (Grant No.11347026)the Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2020MA085 and ZR2020MF113)。
文摘A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter,catalyzed photon number and squeezing parameter.We then analyze the nonclassical properties by examining the photon number distribution,photocount distribution and partial negativity of the Wigner function.Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter,catalyzed photon number and squeezing parameter.