A robotic wheelchair is assumed to be capable of doing tasks like navigation, obstacle detection, etc. using sensors and intelligence. The initial part of the work was development of a cap controlled wheelchair to tes...A robotic wheelchair is assumed to be capable of doing tasks like navigation, obstacle detection, etc. using sensors and intelligence. The initial part of the work was development of a cap controlled wheelchair to test and verify the gesture operation. Following that, a real time operating wheelchair was developed consisting of mode changing option between joystick control mode and head gesture control mode as per as the user’s requirement. The wheelchair consists of MPU6050 sensor, joystick module, RF module, battery, dc motor, toggle switch and Arduino. The movement of the head is detected by MPU6050 and the signal is transmitted to the microcontroller. Then the signal is processed by controller and motion of wheelchair is enabled for navigation. The wheelchair was capable of moving left, right, forward and backward direction. The speed of the wheelchair was 4.8 km/h when tested. Design objective of the wheelchair included cost effectiveness without compromising safety, flexibility and mobility for the users.展开更多
Steering wheel is the most frequently used manual device in tractors,whose position directly affects the handling comfort of the driver and fatigue degree of the arm muscles.In this study,the biomechanical modelling s...Steering wheel is the most frequently used manual device in tractors,whose position directly affects the handling comfort of the driver and fatigue degree of the arm muscles.In this study,the biomechanical modelling software AnyBody was used for an inverse kinetics analysis of the rotation process of tractor steering wheel,calculate the muscle activation degree of the driver’s arm and compare it with the calculated results of surface EMG tests to verify the reliability of the biomechanical model.Based on the biomechanical model,the effects of three position parameters(steering wheel inclination,front-back distance,and upper-lower height)on the activation degree of the driver’s arm muscles were evaluated.The results demonstrated that steering wheel inclination has the most significant effect on the degree of muscle activation,followed by the upper-lower height and then front-back distance.Considering the interaction among factors,a regression orthogonal test was designed,and the test results revealed that the minimum muscle activation(1.2887)can be obtained with the steering wheel inclination of 31°,front-back distance of 431 mm and upper-lower height of 375 mm.The findings can provide a reference for optimizing the structure and position parameters of tractor steering wheels.展开更多
文摘A robotic wheelchair is assumed to be capable of doing tasks like navigation, obstacle detection, etc. using sensors and intelligence. The initial part of the work was development of a cap controlled wheelchair to test and verify the gesture operation. Following that, a real time operating wheelchair was developed consisting of mode changing option between joystick control mode and head gesture control mode as per as the user’s requirement. The wheelchair consists of MPU6050 sensor, joystick module, RF module, battery, dc motor, toggle switch and Arduino. The movement of the head is detected by MPU6050 and the signal is transmitted to the microcontroller. Then the signal is processed by controller and motion of wheelchair is enabled for navigation. The wheelchair was capable of moving left, right, forward and backward direction. The speed of the wheelchair was 4.8 km/h when tested. Design objective of the wheelchair included cost effectiveness without compromising safety, flexibility and mobility for the users.
基金supported by National Natural Science Foundation of China(Grant No.51875230,52175232).
文摘Steering wheel is the most frequently used manual device in tractors,whose position directly affects the handling comfort of the driver and fatigue degree of the arm muscles.In this study,the biomechanical modelling software AnyBody was used for an inverse kinetics analysis of the rotation process of tractor steering wheel,calculate the muscle activation degree of the driver’s arm and compare it with the calculated results of surface EMG tests to verify the reliability of the biomechanical model.Based on the biomechanical model,the effects of three position parameters(steering wheel inclination,front-back distance,and upper-lower height)on the activation degree of the driver’s arm muscles were evaluated.The results demonstrated that steering wheel inclination has the most significant effect on the degree of muscle activation,followed by the upper-lower height and then front-back distance.Considering the interaction among factors,a regression orthogonal test was designed,and the test results revealed that the minimum muscle activation(1.2887)can be obtained with the steering wheel inclination of 31°,front-back distance of 431 mm and upper-lower height of 375 mm.The findings can provide a reference for optimizing the structure and position parameters of tractor steering wheels.