为探讨滩涂围垦对海滨地区景观格局带来的影响,选取1973—2013年Landsat1、4、5、7、8影像数据,利用GIS(Geographic Information System)、RS(Remote Sensing)和景观指数计算方法,对盐城国家级自然保护区(川东港-新洋港段)已围垦区和未...为探讨滩涂围垦对海滨地区景观格局带来的影响,选取1973—2013年Landsat1、4、5、7、8影像数据,利用GIS(Geographic Information System)、RS(Remote Sensing)和景观指数计算方法,对盐城国家级自然保护区(川东港-新洋港段)已围垦区和未围垦区,以及典型垦区(海丰、海北和金丰垦区)围垦前后景观变化情况进行对比分析。1973—2013年研究区围垦特征如下:以10a为间隔,围垦区域平行于海岸线呈条带状向海推进,且条带逐渐变窄;围垦难度逐渐加大,总体上围垦强度呈减小趋势,过程上围垦面积呈升降交替状态;围垦后垦区利用方式各异,主要以种植业和养殖业为主。受围垦影响该区景观格局变化如下:1973—2013年,未围区(Ⅰ区)自然植被面积增加4762 hm2,斑块形状日益复杂、自然,分维数由1.10上升到1.15,景观破碎化水平较低,在0.17—0.21之间,多样性指数由1.11上升至1.52;已围区(Ⅱ、Ⅲ、Ⅳ区)自然植被面积不断减少,分别减少了9873、13788 hm2和6890 hm2,斑块形状更加简单、规则,分维数分别下降了0.03、0.03和0.02,破碎化程度分别上升了0.21、0.23和0.17,多样性均先升后降,升幅约0.8,降幅约0.5。海北、海丰、金丰垦区自然景观不断向人工景观转移,海北和海丰垦区斑块形状不断趋于简单规则,形状指数分别下降0.8和0.5,而金丰垦区形状指数上升0.4,景观破碎度方面分别呈"升—降—升"、"降—升—降"和"升—降"趋势。围垦前,各垦区景观面积和斑块形状变化差异不大,而景观破碎度变化差异明显;围垦期间各垦区景观格局变化一致;围垦后,各垦区除非受新一轮人类活动干扰,其景观格局基本维持围垦末期状态。展开更多
The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this st...The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.展开更多
基金Under the auspices of National Key Research&Development Program of China(No.2017YFC0505901,2017YFA0604904)
文摘The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.