期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于Kinect动态手势识别算法的研究与实现 被引量:10
1
作者 张莹莹 郭星 《计算机技术与发展》 2017年第12期11-15,共5页
随着计算机技术和信息化的发展,人机交互在办公以及生活中显得越来越重要。由于手势具有灵活、直观、简单等优点,成为人机交互研究的重要领域。针对手势识别技术在自然人机交互中对时间和准确度要求较高的问题,提出一种新的手势识别算法... 随着计算机技术和信息化的发展,人机交互在办公以及生活中显得越来越重要。由于手势具有灵活、直观、简单等优点,成为人机交互研究的重要领域。针对手势识别技术在自然人机交互中对时间和准确度要求较高的问题,提出一种新的手势识别算法(IDTW-K)。该算法对经典动态时间规整(Dynamic Time Warping,DTW)算法进行了改进。利用节点在运动序列中的距离方差对各个节点进行权值动态分配,并对DTW的搜索路径进行了详细的分析,采用点和线相结合的范围约束防止其搜索不合理以及优化DTW算法的计算速度,并结合KNN算法提高了手势识别效率。通过实验对IDTWK算法、改进的DTW算法和传统的DTW算法进行了对比,结果表明所提出的算法在精准度和识别速率上有一定的提高。 展开更多
关键词 人机交互 特征提取 手势识别 加权动态时间规整算法 K近邻算法
下载PDF
面向复杂时间序列的k近邻分类器 被引量:9
2
作者 原继东 王志海 +1 位作者 孙艳歌 张伟 《软件学报》 EI CSCD 北大核心 2017年第11期3002-3017,共16页
基于时序对齐的k近邻分类器是时间序列分类的基准算法.在实际应用中,同类复杂时间序列经常展现出不同的全局特性.由于传统时序对齐方法平等对待实例特征并忽略其局部辨别特性,因此难以准确、高效地处理此类具有挑战性的时间序列.为了有... 基于时序对齐的k近邻分类器是时间序列分类的基准算法.在实际应用中,同类复杂时间序列经常展现出不同的全局特性.由于传统时序对齐方法平等对待实例特征并忽略其局部辨别特性,因此难以准确、高效地处理此类具有挑战性的时间序列.为了有效对齐并分类复杂时间序列,提出了一种具有辨别性的局部加权动态时间扭曲方法,用于发现同类复杂时间序列的共同点以及异类序列间的不同点.同时,通过迭代学习时间序列对齐点的正例集与负例集,获取每条复杂时间序列中每个特征的辨别性权重.在多个人工和真实数据集上的实验结果表明了基于局部加权对齐策略的k近邻分类器所具有的可解释性与有效性,并将所提出方法扩展至多变量时间序列分类问题中. 展开更多
关键词 复杂时间序列 K近邻 局部加权 动态时间扭曲
下载PDF
基于DTW约束的动作行为识别 被引量:4
3
作者 李海涛 《计算机仿真》 CSCD 北大核心 2014年第11期227-230,共4页
针对固定视角下的人体动作行为准确识别的研究,通过姿态关节点标定,结合不同关节点对动作内和动作间起到不等的权重区分度的问题,提出一种加权量化矩阵的姿态特征表示方法,将关节点相对坐标经过权重修正作为姿态特征,减少因关节点标定... 针对固定视角下的人体动作行为准确识别的研究,通过姿态关节点标定,结合不同关节点对动作内和动作间起到不等的权重区分度的问题,提出一种加权量化矩阵的姿态特征表示方法,将关节点相对坐标经过权重修正作为姿态特征,减少因关节点标定误差或图像帧的缺失导致的识别精度下降和误判率增加等问题,同时,对DTW算法加入动态时间规整加以约束来降低算法的复杂度,最后在家庭智能空间内获取动作姿态图像序列,通过实验验证关节点标定及行为识别算法的有效性。 展开更多
关键词 关节点标定 姿态特征 加权量化矩阵 动态时间规划
下载PDF
基于加权DTW手势识别方法的研究与实现 被引量:4
4
作者 薛俊杰 陈健美 《信息技术》 2015年第11期125-129,共5页
基于Kinect技术的手势识别是人机交互方面的一个重点,在DTW算法的基础上提出加权DTW手势识别算法,给出一个参数模型,根据手势关节点对手势的相关性来给关节点设置权重,选取合适的模型参数β来最大化类间差距与类内差异之间的比,通过比... 基于Kinect技术的手势识别是人机交互方面的一个重点,在DTW算法的基础上提出加权DTW手势识别算法,给出一个参数模型,根据手势关节点对手势的相关性来给关节点设置权重,选取合适的模型参数β来最大化类间差距与类内差异之间的比,通过比较加权后的DTW代价函数找出最匹配的模板手势。根据提出的加权DTW手势识别算法开发一个智能家居手势识别系统,系统识别用户输入手势并通过蓝牙发送相应操作命令来控制智能家居设备。评价使用DTW算法,基于隐马尔科夫模型(HMM)的手势识别算法和加权DTW算法手势识别的效果,得出加权DTW算法有更高的手势识别正确率。 展开更多
关键词 手势识别 智能家居 加权动态时间规整算法
下载PDF
基于指数平滑和WKNN的金融时间序列相似性搜索 被引量:3
5
作者 张乔夫 何文明 《现代计算机》 2019年第29期21-25,共5页
采用三重指数移动平均平滑金融时间序列。使用动态时间弯曲方法,计算当前样本与历史高收益样本之间的柔性距离。平均收益随平滑次数(0~3次)增加而提高;收益率加权KNN优于中位数KNN,后者又优于1NN;观察长度等于50时,平均收益最高。最优... 采用三重指数移动平均平滑金融时间序列。使用动态时间弯曲方法,计算当前样本与历史高收益样本之间的柔性距离。平均收益随平滑次数(0~3次)增加而提高;收益率加权KNN优于中位数KNN,后者又优于1NN;观察长度等于50时,平均收益最高。最优参数可以将平均收益从2.02%提高到4.8%。 展开更多
关键词 加权KNN 动态时间弯曲 相似性搜索 金融时间序列
下载PDF
基于数据自适应加权的叠前深度偏移成像方法 被引量:2
6
作者 吴成梁 王华忠 +1 位作者 胡江涛 马建波 《石油物探》 EI CSCD 北大核心 2019年第3期381-390,共10页
随着高性能计算机技术的快速发展和“两宽一高”采集技术的广泛应用,高分辨率、高保真的反演成像成为研究热点。首先从Bayes估计理论框架下的地震波反演成像出发,指出Bayes估计理论是地震波反演成像的基础,基于所选择波场预测器(一般为... 随着高性能计算机技术的快速发展和“两宽一高”采集技术的广泛应用,高分辨率、高保真的反演成像成为研究热点。首先从Bayes估计理论框架下的地震波反演成像出发,指出Bayes估计理论是地震波反演成像的基础,基于所选择波场预测器(一般为常密度标量声波方程)的波场预测残差的先验概率分布和要反演的模型参数的先验概率分布决定了模型参数的后验概率密度,后验概率密度的最大化是地震波反演成像最佳解的判定准则。在波场预测器为线性、预测误差为高斯白噪情况下,Bayes估计可在最小二乘意义下实现,并可以得到无偏和方差最小的参数估计结果。实际数据的不完备、线性化的正问题不能很好地模拟数据中的地震波场,使得数据协方差阵和模型协方差阵的引入成为必然。鉴于模型参数的正则化在反演成像中已有充分的讨论,重点讨论了加权最小二乘反演成像框架下数据协方差(逆)算子的作用,说明了数据加权处理在叠前深度偏移中的必要性。在将加权系数矩阵视为对角矩阵的基础上,提出了采用倾角扫描和动态时间规整算法确定数据加权系数,并将其应用于叠前深度偏移成像中。理论和实际数据的数值实验结果表明数据协方差(逆)算子能够有效提高偏移成像质量。 展开更多
关键词 Bayes反演框架 数据协方差算子 加权最小二乘偏移 加权系数 叠前深度偏移 倾角扫描 动态时间规整
下载PDF
基于时序Landsat遥感数据的新疆开孔河流域农作物类型识别 被引量:19
7
作者 汪小钦 邱鹏勋 +1 位作者 李娅丽 茶明星 《农业工程学报》 EI CAS CSCD 北大核心 2019年第16期180-188,共9页
快速、准确地获取农作物类别信息对农业部门的生产管理、政策制定具有重要作用。目前基于时间序列数据进行农作物分类主要是采用长时间序列的中低分辨率影像,大量的混合像元限制了农作物的分类精度。在农作物分类的特征选择方面主要是... 快速、准确地获取农作物类别信息对农业部门的生产管理、政策制定具有重要作用。目前基于时间序列数据进行农作物分类主要是采用长时间序列的中低分辨率影像,大量的混合像元限制了农作物的分类精度。在农作物分类的特征选择方面主要是采用归一化植被指数(normalized differential vegetation index, NDVI),而其他特征量的应用还相对较少。该文以新疆开孔河农业区为研究区域,利用2016年的Landsat7 ETM+、Landsat8 OLI影像数据集,基于时间加权的动态时间规整(time weighted dynamic time warping,TWDTW)方法开展农作物类型识别研究,主要包括香梨、小麦、辣椒、棉花等。根据野外采集的样本点构建主要农作物的NDVI和第一主成分(principal component analysis 1,PCA1)时间序列,以反映不同农作物间的物候差异。基于NDVI数据分别利用DTW和TWDTW算法计算各未知像元序列与标准序列间的相似性程度,得到农作物的分类结果,2种方法的分类精度分别为65.69%、82.68%,表明时间权重的加入提高了DTW算法识别不同农作物的能力。结合NDVI与PCA1后,TWDTW的分类精度又提高了2.61个百分点,部分农作物的误分现象明显减少,说明PCA1能够进一步扩大作物间的差异性,提高分类精度。同时,还通过选取有限时相的影像组合进行分类,试验结果表明TWDTW算法在中高分辨率数据较少的情况下能够得到较为满意的分类结果,说明TWDTW算法在中高分辨率影像越来越丰富的时代具有应用潜力。 展开更多
关键词 遥感 作物 分类 时间加权的动态时间规整(TWDTW) 时间序列 归一化植被指数 主成分变换
下载PDF
基于加权动态时间弯曲的多元时间序列相似性匹配方法 被引量:11
8
作者 叶燕清 杨克巍 +2 位作者 姜江 葛冰峰 豆亚杰 《模式识别与人工智能》 EI CSCD 北大核心 2017年第4期314-327,共14页
针对常用方法忽略变量相关性和局部形状特性问题,提出基于加权动态时间弯曲的多元时间序列相似性匹配方法(CPCA-SWDTW).首先,在原加权动态时间弯曲算法基础上,引入形态因子,提出基于形态特征的加权动态时间弯曲算法(SWDTW).然后,提取多... 针对常用方法忽略变量相关性和局部形状特性问题,提出基于加权动态时间弯曲的多元时间序列相似性匹配方法(CPCA-SWDTW).首先,在原加权动态时间弯曲算法基础上,引入形态因子,提出基于形态特征的加权动态时间弯曲算法(SWDTW).然后,提取多元时间序列的主成分作为模式表示,消除变量间的相关性,同时将方差贡献率作为相应主成分的权重.在此基础上,运用SWDTW,度量多元时间序列间的相似度.最后,通过相似性搜索实验表明,CPCA-SWDTW具有较好的准确性和鲁棒性.敏感性分析说明CPCA-SWDTW在一定程度上受到权重函数参数的影响. 展开更多
关键词 多元时间序列 相似性匹配 共同主成分分析 加权动态时间弯曲
下载PDF
基于遥感时序物候特征的耕地非粮化多模式监测方法 被引量:1
9
作者 杨悦 杨贵军 +4 位作者 龙慧灵 张静 陈伟男 高美玲 杨耘 《农业工程学报》 EI CAS CSCD 北大核心 2024年第2期283-294,共12页
耕地非粮化对粮食生产和农业可持续发展构成潜在威胁,精准监测不同的耕地非粮化类型对制定针对性的农业管理政策至关重要。该研究以河北省石家庄市藁城区为研究区,首先采用最大类间方差算法(OTSU)提取果园和耕地范围,然后利用Google Ear... 耕地非粮化对粮食生产和农业可持续发展构成潜在威胁,精准监测不同的耕地非粮化类型对制定针对性的农业管理政策至关重要。该研究以河北省石家庄市藁城区为研究区,首先采用最大类间方差算法(OTSU)提取果园和耕地范围,然后利用Google Earth Engine(GEE)云计算平台构建了基于Sentinel-2遥感数据的特征集,包括光谱特征、物候特征和NDVI(normalized difference vegetation index)时序特征。结合面向对象分割和随机森林(radom forest, RF)、时间加权的动态时间规整(time-weighted dynamic time warping, TW-DTW)算法,构建了4种不同的分类模式用于提取粮食作物和露天蔬菜、大棚种植等非粮食作物。通过选择最优模式,提取了研究区2019-2022年间不同非粮化类型的空间分布信息,并探讨了不同模式的优点和局限性。结果表明:1)采用面向对象的机器学习模式进行耕地内作物分类的精度最佳,两个生长季内总体精度分别达到93.23%和90.10%,Kappa系数分别达到0.91和0.88;2)基于时间序列匹配的模式在区分粮食作物和其他地类方面表现出较高的准确性,冬小麦、玉米和大豆的用户精度分别高于95.60%、74.70%、82.70%,制图精度分别高于97.70%、86.40%、93.10%;3)利用面向对象的机器学习模式进行耕地非粮化信息提取,在两个作物生长季的总体精度为87.00%和81.00%。分析耕地非粮化结果发现,藁城区2019-2022年的年际性非粮化面积为2 753.09 hm^(2),其中果园占比最高;而季节性非粮化结果显示,秋粮非粮化面积(3 174.86 hm^(2))明显高于夏粮非粮化面积(1 060.27 hm^(2))。该研究利用Sentinel-2时序遥感数据,为一年两熟区耕地非粮化监测提供一种新的思路,可以为制定差异化农业管理政策提供依据。 展开更多
关键词 遥感 时间序列 耕地非粮化 机器学习 时间加权的动态时间规整
下载PDF
Merge-Weighted Dynamic Time Warping for Speech Recognition 被引量:1
10
作者 张湘莉兰 骆志刚 李明 《Journal of Computer Science & Technology》 SCIE EI CSCD 2014年第6期1072-1082,共11页
Obtaining training material for rarely used English words and common given names from countries where English is not spoken is difficult due to excessive time, storage and cost factors. By considering personal privacy... Obtaining training material for rarely used English words and common given names from countries where English is not spoken is difficult due to excessive time, storage and cost factors. By considering personal privacy, language- independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition (ASR) is a convenient option to solve tile problem. The dynamic time warping (DTW) algorithm is the state-of-the-art algorithm for small-footprint SD ASR for real-time applications with limited storage and small vocabularies. These applications include voice dialing on mobile devices, menu-driven recognition, and voice control on vehicles and robotics. However, traditional DTW has several lhnitations, such as high computational complexity, constraint induced coarse approximation, and inaccuracy problems. In this paper, we introduce the merge-weighted dynamic time warping (MWDTW) algorithm. This method defines a template confidence index for measuring the similarity between merged training data and testing data, while following the core DTW process. MWDTW is simple, efficient, and easy to implement. With extensive experiments on three representative SD speech recognition datasets, we demonstrate that our method outperforms DTW, DTW on merged speech data, the hidden Markov model (HMM) significantly, and is also six times faster than DTW overall. 展开更多
关键词 merge-weighted dynamic time warping natural language processing speech recognition and synthesis tem-plate confidence index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部