通过6 k W横流CO2激光器在40Cr钢表面激光熔覆了不同成分配比的WC/Co50复合涂层。运用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)和X射线衍射(XRD)等表征手段分析了涂层结合区形貌、显微组织和物相组成,测试了复合涂层的显微硬度和...通过6 k W横流CO2激光器在40Cr钢表面激光熔覆了不同成分配比的WC/Co50复合涂层。运用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)和X射线衍射(XRD)等表征手段分析了涂层结合区形貌、显微组织和物相组成,测试了复合涂层的显微硬度和磨损性能。结果表明,外加的WC颗粒在高能激光束作用下大部分发生溶解,涂层主要由碳化物WC、W2C、(Cr,Fe)7C3和M6C及Fe-Cr固溶体等物相组成。涂层中组织结构比较复杂,出现了树枝状初晶、包状过共晶,枝晶间共晶和硬质相颗粒。WC/Co50熔覆涂层的最大显微硬度位于涂层次表面,其最大平均显微硬度为基材的1.93倍,且随着深度的增加逐渐降低。相同磨损条件下,复合涂层的磨损失重仅为基材的13.3%。展开更多
The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different...The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance.展开更多
A modified single melt technique involving joint charging was developed for preparation of aluminum bronze, Cu-14%Al-X(mass fraction) alloy, which could be used as die materials. The mechanical properties and wear beh...A modified single melt technique involving joint charging was developed for preparation of aluminum bronze, Cu-14%Al-X(mass fraction) alloy, which could be used as die materials. The mechanical properties and wear behavior of the developed alloy under boundary-lubrication conditions was investigated. The results demonstrate that all the phases disperse homogeneously in the bronze matrix with a significant amount of discrete and spherical brittle and hard γ2 phase, moreover, the dispersed κ phase are the dominant factor that improves the anti-deformation properties of the soft matrix, after a solution treatment at 920 ℃ for 2 h and followed by aging at 580 ℃ for 3 h, thus remarkably improves the mechanical properties and wear resistance of the developed alloy. The Cu-14%Al-X alloy can be used as materials for static precise stretching and squeezing dies.展开更多
文摘通过6 k W横流CO2激光器在40Cr钢表面激光熔覆了不同成分配比的WC/Co50复合涂层。运用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)和X射线衍射(XRD)等表征手段分析了涂层结合区形貌、显微组织和物相组成,测试了复合涂层的显微硬度和磨损性能。结果表明,外加的WC颗粒在高能激光束作用下大部分发生溶解,涂层主要由碳化物WC、W2C、(Cr,Fe)7C3和M6C及Fe-Cr固溶体等物相组成。涂层中组织结构比较复杂,出现了树枝状初晶、包状过共晶,枝晶间共晶和硬质相颗粒。WC/Co50熔覆涂层的最大显微硬度位于涂层次表面,其最大平均显微硬度为基材的1.93倍,且随着深度的增加逐渐降低。相同磨损条件下,复合涂层的磨损失重仅为基材的13.3%。
基金supported by FTC through the projects PTDC/EMS-TEC/5422/2014 and EXCL/EMS-TEC/ 0460/2012the grant SFRH/BPD/112111/2015+1 种基金supported by FCT with the reference project UID/EEA/04436/2013by FEDER funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145FEDER-006941.
文摘The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance.
基金Project(GS992-A52-052) supported by the Natural Science Foundation of Gansu Province, China
文摘A modified single melt technique involving joint charging was developed for preparation of aluminum bronze, Cu-14%Al-X(mass fraction) alloy, which could be used as die materials. The mechanical properties and wear behavior of the developed alloy under boundary-lubrication conditions was investigated. The results demonstrate that all the phases disperse homogeneously in the bronze matrix with a significant amount of discrete and spherical brittle and hard γ2 phase, moreover, the dispersed κ phase are the dominant factor that improves the anti-deformation properties of the soft matrix, after a solution treatment at 920 ℃ for 2 h and followed by aging at 580 ℃ for 3 h, thus remarkably improves the mechanical properties and wear resistance of the developed alloy. The Cu-14%Al-X alloy can be used as materials for static precise stretching and squeezing dies.