Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of col...Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of column features and l3=2-norm of row features,is proposed for the machinery fault diagnosis.ICF can be used as a feature learning algorithm,and the learned features can be fed into the classification to achieve the automatic fault classification.ICF can also be used as a filter training method to extract and separate weak fault components from the noise signals without any prior experience.Simulated and experimental signals of bearing fault are used to validate the performance of ICF.The results confirm that ICF performs superior in three fault diagnosis fields including intelligent fault diagnosis,weak signature detection and compound fault separation.展开更多
Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level...Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance.展开更多
基金supported by the Major National Science and Technology Projects(No.2017-IV-0008-0045)the National Natural Science Foundation of China(Nos.51675262 and 51975276)+1 种基金the Advance Research Field Fund Project of China(No.61400040304)the National Key Research and Development Program of China(No.2018YFB2003300)。
文摘Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of column features and l3=2-norm of row features,is proposed for the machinery fault diagnosis.ICF can be used as a feature learning algorithm,and the learned features can be fed into the classification to achieve the automatic fault classification.ICF can also be used as a filter training method to extract and separate weak fault components from the noise signals without any prior experience.Simulated and experimental signals of bearing fault are used to validate the performance of ICF.The results confirm that ICF performs superior in three fault diagnosis fields including intelligent fault diagnosis,weak signature detection and compound fault separation.
基金supported by the National Key Research and Development Program of China(No.2018YFB2003300)National Science and Technology Major Project,China(No.2017-IV-0008-0045)National Natural Science Foundation of China(No.51675262).
文摘Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance.