期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Intrinsic component filtering for fault diagnosis of rotating machinery 被引量:4
1
作者 Zongzhen ZHANG Shunming LI +2 位作者 Jiantao LU Yu XIN Huijie MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期397-409,共13页
Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of col... Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of column features and l3=2-norm of row features,is proposed for the machinery fault diagnosis.ICF can be used as a feature learning algorithm,and the learned features can be fed into the classification to achieve the automatic fault classification.ICF can also be used as a filter training method to extract and separate weak fault components from the noise signals without any prior experience.Simulated and experimental signals of bearing fault are used to validate the performance of ICF.The results confirm that ICF performs superior in three fault diagnosis fields including intelligent fault diagnosis,weak signature detection and compound fault separation. 展开更多
关键词 Compound fault separation Intelligent fault diagnosis Intrinsic component filtering Unsupervised learning weak signature detection
原文传递
基于非线性时间序列的胎儿心电信号提取算法 被引量:3
2
作者 任明荣 王晨 +1 位作者 方滨 王普 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期5006-5008,共3页
研究了基于非线性时间序列的状态空间投影算法提取胎儿心电信号。母亲、胎儿心电信号以及噪声在状态空间中的吸引子表现形式不同,通过选择不同的邻域半径,将混合信号在某一局部范围内投影,就可以分离出所要监测的胎儿心电信号。对模拟... 研究了基于非线性时间序列的状态空间投影算法提取胎儿心电信号。母亲、胎儿心电信号以及噪声在状态空间中的吸引子表现形式不同,通过选择不同的邻域半径,将混合信号在某一局部范围内投影,就可以分离出所要监测的胎儿心电信号。对模拟的和实际测量的孕妇腹部混合信号仿真,都得到了较好的效果。相对于其它胎儿心电信号提取算法,该方法只需要一路导联信号就可以分离出胎儿心电信号,方便了医生对胎儿的监测。该算法对其它微弱特征信号提取具有借鉴作用。 展开更多
关键词 非线性时间序列 状态空间投影 胎儿心电信号 微弱信号提取
下载PDF
Structured sparsity assisted online convolution sparse coding and its application on weak signature detection 被引量:1
3
作者 Huijie MA Shunming LI +2 位作者 Jiantao LU Zongzhen ZHANG Siqi GONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期266-276,共11页
Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level... Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance. 展开更多
关键词 Dictionary learning Online convolutional sparse coding(OCSC) Signal denoising Signal processing weak signature detection
原文传递
基于卷积稀疏滤波的轴承微弱故障检测方法
4
作者 苗乃树 王东岳 +2 位作者 杨化伟 王树城 卢绪振 《农业装备与车辆工程》 2020年第9期131-134,共4页
提出了一种基于卷积稀疏滤波和Hilbert包络谱的齿轮微弱故障检测方法。该方法通过稀疏特征学习,提取强噪声样本中的微弱故障信息,提高故障信号的信噪比,最后通过时域波形和Hilbert包络谱的特征频率及其谐波,判断轴承的故障信息。通过仿... 提出了一种基于卷积稀疏滤波和Hilbert包络谱的齿轮微弱故障检测方法。该方法通过稀疏特征学习,提取强噪声样本中的微弱故障信息,提高故障信号的信噪比,最后通过时域波形和Hilbert包络谱的特征频率及其谐波,判断轴承的故障信息。通过仿真和试验信号,验证了该方法的有效性,与经典的MED算法相比,提出的方法具有更强的噪声适应能力。 展开更多
关键词 无监督学习 稀疏滤波 微弱信号增强 Hilbert包络解调
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部