This work extends the use of wavelet-based denoising as an alternative processing scheme to improve measured mobile-radio channel power delay profiles. It has already been reported that, when applied on real domain da...This work extends the use of wavelet-based denoising as an alternative processing scheme to improve measured mobile-radio channel power delay profiles. It has already been reported that, when applied on real domain data (amplitude only), denoising provides mainly a qualitative improvement. Here, phase content was also considered, leading to significant qualitative and quantitative improvement of the processed profiles. Signal-to-noise ratios and dynamic ranges improvements as high as 50 dB have been observed.展开更多
The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation(where A is any expansive matrix with integer entries and|det A|=2) wavelet multipliers in high dimensional case were c...The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation(where A is any expansive matrix with integer entries and|det A|=2) wavelet multipliers in high dimensional case were completely characterized by the Wutam Consortium(1998) and Z. Y. Li, et al.(2010). But there exist no more results on orthogonal multivariate wavelet matrix multipliers corresponding integer expansive dilation matrix with the absolute value of determinant not 2 in L~2(R~2). In this paper, we choose 2I2=(~2~0)as the dilation matrix and consider the 2 I2-dilation orthogonal multivariate waveletΨ = {ψ, ψ, ψ},(which is called a dyadic bivariate wavelet) multipliers. We call the3 × 3 matrix-valued function A(s) = [ f(s)], where fi, jare measurable functions, a dyadic bivariate matrix Fourier wavelet multiplier if the inverse Fourier transform of A(s)( ψ(s), ψ(s), ψ(s)) ~T=( g(s), g(s), g(s))~ T is a dyadic bivariate wavelet whenever(ψ, ψ, ψ) is any dyadic bivariate wavelet. We give some conditions for dyadic matrix bivariate wavelet multipliers. The results extended that of Z. Y. Li and X. L.Shi(2011). As an application, we construct some useful dyadic bivariate wavelets by using dyadic Fourier matrix wavelet multipliers and use them to image denoising.展开更多
文摘This work extends the use of wavelet-based denoising as an alternative processing scheme to improve measured mobile-radio channel power delay profiles. It has already been reported that, when applied on real domain data (amplitude only), denoising provides mainly a qualitative improvement. Here, phase content was also considered, leading to significant qualitative and quantitative improvement of the processed profiles. Signal-to-noise ratios and dynamic ranges improvements as high as 50 dB have been observed.
基金partially supported by the National Natural Science Foundation of China (Grant No. 11101142 and No. 11571107)
文摘The single 2 dilation orthogonal wavelet multipliers in one dimensional case and single A-dilation(where A is any expansive matrix with integer entries and|det A|=2) wavelet multipliers in high dimensional case were completely characterized by the Wutam Consortium(1998) and Z. Y. Li, et al.(2010). But there exist no more results on orthogonal multivariate wavelet matrix multipliers corresponding integer expansive dilation matrix with the absolute value of determinant not 2 in L~2(R~2). In this paper, we choose 2I2=(~2~0)as the dilation matrix and consider the 2 I2-dilation orthogonal multivariate waveletΨ = {ψ, ψ, ψ},(which is called a dyadic bivariate wavelet) multipliers. We call the3 × 3 matrix-valued function A(s) = [ f(s)], where fi, jare measurable functions, a dyadic bivariate matrix Fourier wavelet multiplier if the inverse Fourier transform of A(s)( ψ(s), ψ(s), ψ(s)) ~T=( g(s), g(s), g(s))~ T is a dyadic bivariate wavelet whenever(ψ, ψ, ψ) is any dyadic bivariate wavelet. We give some conditions for dyadic matrix bivariate wavelet multipliers. The results extended that of Z. Y. Li and X. L.Shi(2011). As an application, we construct some useful dyadic bivariate wavelets by using dyadic Fourier matrix wavelet multipliers and use them to image denoising.