相比基于特征点的传统图像特征匹配算法,基于深度学习的特征匹配算法能产生更大规模和更高质量的匹配.为获取较大范围且清晰的路面裂缝图像,并解决弱纹理图像拼接过程中发生的匹配对缺失问题,本文基于深度学习LoFTR(detector-free local...相比基于特征点的传统图像特征匹配算法,基于深度学习的特征匹配算法能产生更大规模和更高质量的匹配.为获取较大范围且清晰的路面裂缝图像,并解决弱纹理图像拼接过程中发生的匹配对缺失问题,本文基于深度学习LoFTR(detector-free local feature matching with Transformers)算法实现路面图像的拼接,并结合路面图像的特点,提出局部拼接方法缩短算法运行的时间.先对相邻图像做分割处理,再通过LoFTR算法产生密集特征匹配,根据匹配结果计算出单应矩阵值并实现像素转换,然后通过基于小波变换的图像融合算法获得局部拼接后的图像,最后添加未输入匹配网络的部分图像,得到相邻图像的完整拼接结果.实验结果表明,与基于SIFT(scale-invariant feature transform)、SURF(speeded up robust features)、ORB(oriented FAST and rotated BRIEF)的图像拼接方法比较,研究所提出的拼接方法对路面图像的拼接效果更佳,特征匹配阶段产生的匹配结果置信度更高.对于两幅路面图像的拼接,采用局部拼接方法耗费的时间较改进之前缩短了27.53%.研究提出的拼接方案是高效且准确的,能够为道路病害监测提供总体病害信息.展开更多
文摘相比基于特征点的传统图像特征匹配算法,基于深度学习的特征匹配算法能产生更大规模和更高质量的匹配.为获取较大范围且清晰的路面裂缝图像,并解决弱纹理图像拼接过程中发生的匹配对缺失问题,本文基于深度学习LoFTR(detector-free local feature matching with Transformers)算法实现路面图像的拼接,并结合路面图像的特点,提出局部拼接方法缩短算法运行的时间.先对相邻图像做分割处理,再通过LoFTR算法产生密集特征匹配,根据匹配结果计算出单应矩阵值并实现像素转换,然后通过基于小波变换的图像融合算法获得局部拼接后的图像,最后添加未输入匹配网络的部分图像,得到相邻图像的完整拼接结果.实验结果表明,与基于SIFT(scale-invariant feature transform)、SURF(speeded up robust features)、ORB(oriented FAST and rotated BRIEF)的图像拼接方法比较,研究所提出的拼接方法对路面图像的拼接效果更佳,特征匹配阶段产生的匹配结果置信度更高.对于两幅路面图像的拼接,采用局部拼接方法耗费的时间较改进之前缩短了27.53%.研究提出的拼接方案是高效且准确的,能够为道路病害监测提供总体病害信息.