The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be ...The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application.展开更多
Experimental study and theoretical research were described in the paper on the characteristics of the flow field around a vertical circular cylindrical artificial island under the . action of waves and viscous curren...Experimental study and theoretical research were described in the paper on the characteristics of the flow field around a vertical circular cylindrical artificial island under the . action of waves and viscous current. Flow field and hydrodynamic coefficientS of an artificial island under the action of waves and viscous current were computed and compared with those for the cases of pure viscous current and pure incident waves and those of measured resultS with good agreement.展开更多
Coastal wave energy resources have enormous exploitation potential due to shorter weather window,closer installation distance and lower maintenance cost.However,impact loads generated by depth variation from offshore ...Coastal wave energy resources have enormous exploitation potential due to shorter weather window,closer installation distance and lower maintenance cost.However,impact loads generated by depth variation from offshore to nearshore and wave-current interaction,may lead to a catastrophic damage or complete destruction to wave energy converters(WECs).This objective of this paper is to investigate slamming response of a coastal oscillating wave surge converter(OWSC)entering or leaving water freely.Based on fully nonlinear potential flow theory,a time-domain wave-current-structure interaction model combined with higher-order boundary element method(HOBEM),is developed to analyze the coupled hydrodynamic problem.The variable-depth seabed is considered in the model to illustrate the shallow water effect on impact loads and free surface profiles in coastal zone.A domain decomposition approach is utilized to simulate the overlapping phenomenon generated by a jet falling into water under gravity effect.Through a series of Lagrangian interpolation methods,the meshes on boundaries are rearranged to avoid the mismatch between element size on free surface and body surface.The present model is validated against the existing experimental and numerical results.Simulations are also provided for the effects of wave-current interaction and uneven local seabed on the slamming responses.It is found that the length of the splash jet increases for a following current and decreases for an opposing current,and that the slamming response of the OWSC device is sensitive to the geometric features of the uneven seabed.展开更多
Based on the Boussinesq assumption, derived are couple equations of free surface elevation and horizontal velocities for horizontal irrotational flow, and analytical expressions of the corresponding pressure and verti...Based on the Boussinesq assumption, derived are couple equations of free surface elevation and horizontal velocities for horizontal irrotational flow, and analytical expressions of the corresponding pressure and vertical velocity. After the free surface elevation and horizontal velocity at a certain depth are obtained by numerical method, the pressure and vertical velocity distributions can be obtained by simple calculation. The dispersion at different depths is the same at the O (epsilon) approximation. The wave amplitude will decrease with increasing time due to viscosity, but it will increase due to the matching of viscosity and the bed slope, thus, flow is unstable. Numerical or analytical results show that the wave amplitude, velocity and length will increase as the current increases along the wave direction. but the amplitude will increase, and the wave velocity and length will decrease as the water depth decreases.展开更多
The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity compon...The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been compreheusively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. - ρ uv^- only, this study demonstrates that the momentum flux caused by mean velocities, i.e., u^- and v^-, is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.展开更多
The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing proce...The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing process in concurrent direction. The 1-D wave-period-averaged dispersion equation is derived and an expression for the wave-current induced longitudinal dispersion coefficient (WCLDC) is propased based on Fiscber' s expression (1979) for dispersion in unidirectional flow. The result shows that the effect of waves on dispersion is mainly due to the cross-sectional variation of the drift velocity. Furthermore, to obtain a more practical expression of the WCLDC, the longitudinal dispersion coefficient due to Seo and Cheong (1998) is modified to incluee the effect of drift velocity. Laboratory experiments have been conducted to verify the propased expression. The experimental results, together with dimensional analysis, show that tbe wave effect can be reflected by the ratio between the wave amplitude and wave period. A comparative study between the cases with and without waves demonstrates that the magnitude of the longitudinal dispersion coefficient is increased nnder the presence of waves.展开更多
基金This paper was supported bythe Foundationforthe Author of National Excellent Doctoral Dissertation of P.R.China(Grant No.200428) the National Natural Science Foundation of China (Grant Nos .10272072 and 50424913) +1 种基金theShanghai Natural Science Foundation (Grant No.05ZR14048) the Shanghai Leading Academic Discipline Pro-ject (Grant No. Y0103)
文摘The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application.
文摘Experimental study and theoretical research were described in the paper on the characteristics of the flow field around a vertical circular cylindrical artificial island under the . action of waves and viscous current. Flow field and hydrodynamic coefficientS of an artificial island under the action of waves and viscous current were computed and compared with those for the cases of pure viscous current and pure incident waves and those of measured resultS with good agreement.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52025112 and 51861130358)the State Key Laboratory of Ocean Engineering+1 种基金China(Shanghai Jiao Tong University)(Grant No.1905)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society。
文摘Coastal wave energy resources have enormous exploitation potential due to shorter weather window,closer installation distance and lower maintenance cost.However,impact loads generated by depth variation from offshore to nearshore and wave-current interaction,may lead to a catastrophic damage or complete destruction to wave energy converters(WECs).This objective of this paper is to investigate slamming response of a coastal oscillating wave surge converter(OWSC)entering or leaving water freely.Based on fully nonlinear potential flow theory,a time-domain wave-current-structure interaction model combined with higher-order boundary element method(HOBEM),is developed to analyze the coupled hydrodynamic problem.The variable-depth seabed is considered in the model to illustrate the shallow water effect on impact loads and free surface profiles in coastal zone.A domain decomposition approach is utilized to simulate the overlapping phenomenon generated by a jet falling into water under gravity effect.Through a series of Lagrangian interpolation methods,the meshes on boundaries are rearranged to avoid the mismatch between element size on free surface and body surface.The present model is validated against the existing experimental and numerical results.Simulations are also provided for the effects of wave-current interaction and uneven local seabed on the slamming responses.It is found that the length of the splash jet increases for a following current and decreases for an opposing current,and that the slamming response of the OWSC device is sensitive to the geometric features of the uneven seabed.
基金National Natural Science Foundation of China.(Grant No.19572077)
文摘Based on the Boussinesq assumption, derived are couple equations of free surface elevation and horizontal velocities for horizontal irrotational flow, and analytical expressions of the corresponding pressure and vertical velocity. After the free surface elevation and horizontal velocity at a certain depth are obtained by numerical method, the pressure and vertical velocity distributions can be obtained by simple calculation. The dispersion at different depths is the same at the O (epsilon) approximation. The wave amplitude will decrease with increasing time due to viscosity, but it will increase due to the matching of viscosity and the bed slope, thus, flow is unstable. Numerical or analytical results show that the wave amplitude, velocity and length will increase as the current increases along the wave direction. but the amplitude will increase, and the wave velocity and length will decrease as the water depth decreases.
文摘The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been compreheusively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. - ρ uv^- only, this study demonstrates that the momentum flux caused by mean velocities, i.e., u^- and v^-, is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.
文摘The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing process in concurrent direction. The 1-D wave-period-averaged dispersion equation is derived and an expression for the wave-current induced longitudinal dispersion coefficient (WCLDC) is propased based on Fiscber' s expression (1979) for dispersion in unidirectional flow. The result shows that the effect of waves on dispersion is mainly due to the cross-sectional variation of the drift velocity. Furthermore, to obtain a more practical expression of the WCLDC, the longitudinal dispersion coefficient due to Seo and Cheong (1998) is modified to incluee the effect of drift velocity. Laboratory experiments have been conducted to verify the propased expression. The experimental results, together with dimensional analysis, show that tbe wave effect can be reflected by the ratio between the wave amplitude and wave period. A comparative study between the cases with and without waves demonstrates that the magnitude of the longitudinal dispersion coefficient is increased nnder the presence of waves.