Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the stru...Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).展开更多
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is a...An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.展开更多
基金National Science Foundation of U.S.A.under grant CMS-9503533
文摘Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).
基金This work was partly supported by the Japan Society for the Promotion of Science (JSPS) for RONPAKU program by Foundation for University Key Teacher by the Ministry of Education of China
文摘An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.