In this paper,a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authenticati...In this paper,a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authentication and tampering detection of Arabic text contents.The proposed approach known as Second order of Alphanumeric Mechanism of Markov model and Zero-Watermarking Approach(SAMMZWA).Second level order of alphanumeric mechanism based on hidden Markov model is integrated with text zero-watermarking techniques to improve the overall performance and tampering detection accuracy of the proposed approach.The SAMMZWA approach embeds and detects the watermark logically without altering the original text document.The extracted features are used as a watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,SAMMZWA has been implemented and validated with attacked Arabic text.Experiments were performed on four datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results show that our method is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection than compared methods.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding this work under grant number(R.G.P.2/55/40/2019),Received by Fahd N.Al-Wesabi.www.kku.edu.sa。
文摘In this paper,a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authentication and tampering detection of Arabic text contents.The proposed approach known as Second order of Alphanumeric Mechanism of Markov model and Zero-Watermarking Approach(SAMMZWA).Second level order of alphanumeric mechanism based on hidden Markov model is integrated with text zero-watermarking techniques to improve the overall performance and tampering detection accuracy of the proposed approach.The SAMMZWA approach embeds and detects the watermark logically without altering the original text document.The extracted features are used as a watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,SAMMZWA has been implemented and validated with attacked Arabic text.Experiments were performed on four datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results show that our method is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection than compared methods.