Constructed wetlands have emerged as a viable option for helping to solve a wide range of water quality problems. However, heavy metals adsorbed by substrates would decrease the growth of plants, impair the functions ...Constructed wetlands have emerged as a viable option for helping to solve a wide range of water quality problems. However, heavy metals adsorbed by substrates would decrease the growth of plants, impair the functions of wetlands and eventually result in a failure of contaminant removal. Typha latifolia L., tolerant to heavy metals, has been widely used for phytoremediation of Pb/Zn mine tailings under waterlogged conditions. This study examined effects of iron as ferrous sulfate (100 and 500 mg/kg) and lead as lead nitrate (0, 100, 500 and 1000 mg/kg) on phosphorus utilization and microbial community structure in a constructed wetland. Wetland plants (T. latifolia) were grown for 8 weeks in rhizobags filled with a paddy soil under waterlogged conditions. The results showed that both the amount of iron plaque on the roots and phosphorus adsorbed on the plaque decreased with the amount of lead addition. When the ratio of added iron to lead was 1:1, phosphorus utilized by plants was the maximum. Total amount of phospholipids fatty acids (PLFAs) was 23%-59% higher in the rhizosphere soil than in bulk soil. The relative abundance of Gram-negative bacteria, aerobic bacteria, and methane oxidizing bacteria was also higher in the rhizosphere soil than in bulk soil, but opposite was observed for other bacteria and fungi. Based on cluster analysis, microbial communities were mostly controlled by the addition of ferrous sulfate and lead nitrate in rhizosphere and bulk soil, respectively.展开更多
Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is ma...Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer(MODIS) data. The Jianghan Plain, a floodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index(EVI), night land surface temperature(LST), diurnal LST differences(ΔLST), albedo, and the apparent thermal inertia(ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classified into different types according to soil and land cover types in this paper, and a linear mixing model was developed by fitting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efficiently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.展开更多
基金supported by the National Nature Science Foundation for Distinguished Young Scholars of China (No 40425007)the Science and Tech-nology Project of Zhejiang Province (No 2005E10047,2005C13003)
文摘Constructed wetlands have emerged as a viable option for helping to solve a wide range of water quality problems. However, heavy metals adsorbed by substrates would decrease the growth of plants, impair the functions of wetlands and eventually result in a failure of contaminant removal. Typha latifolia L., tolerant to heavy metals, has been widely used for phytoremediation of Pb/Zn mine tailings under waterlogged conditions. This study examined effects of iron as ferrous sulfate (100 and 500 mg/kg) and lead as lead nitrate (0, 100, 500 and 1000 mg/kg) on phosphorus utilization and microbial community structure in a constructed wetland. Wetland plants (T. latifolia) were grown for 8 weeks in rhizobags filled with a paddy soil under waterlogged conditions. The results showed that both the amount of iron plaque on the roots and phosphorus adsorbed on the plaque decreased with the amount of lead addition. When the ratio of added iron to lead was 1:1, phosphorus utilized by plants was the maximum. Total amount of phospholipids fatty acids (PLFAs) was 23%-59% higher in the rhizosphere soil than in bulk soil. The relative abundance of Gram-negative bacteria, aerobic bacteria, and methane oxidizing bacteria was also higher in the rhizosphere soil than in bulk soil, but opposite was observed for other bacteria and fungi. Based on cluster analysis, microbial communities were mostly controlled by the addition of ferrous sulfate and lead nitrate in rhizosphere and bulk soil, respectively.
基金supported by the National Basic Research Program of China (2012CB417001)the National Natural Science Foundation of China (41271125)
文摘Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer(MODIS) data. The Jianghan Plain, a floodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index(EVI), night land surface temperature(LST), diurnal LST differences(ΔLST), albedo, and the apparent thermal inertia(ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classified into different types according to soil and land cover types in this paper, and a linear mixing model was developed by fitting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efficiently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.