基于均质油藏水驱油物理模拟实验,研究不同黏度均质油藏在不同采油速度下的水驱特征。低黏度油藏(黏度小于5 m Pa·s)水驱波及均匀,流线粗。随采油速度的提高,注水沿油层底部突进减弱,纵向波及更均匀,油层顶、底面波及系数差异减...基于均质油藏水驱油物理模拟实验,研究不同黏度均质油藏在不同采油速度下的水驱特征。低黏度油藏(黏度小于5 m Pa·s)水驱波及均匀,流线粗。随采油速度的提高,注水沿油层底部突进减弱,纵向波及更均匀,油层顶、底面波及系数差异减小。低黏度油藏高速开发无水期采出程度明显高于低速开发,含水上升速度低于低速开发,适宜高速开发模式。中高黏度油藏(黏度5~50 m Pa·s)水驱过程中注入水表现出明显的指进现象,水驱流线细,水驱波及不完全,流线间波及程度弱,油层顶、底面波及系数差异大。随采油速度的提高,中高黏度油藏水驱流线更细,波及更不完全,油层顶、底面波及系数明显降低。中高黏度油藏高速开发见水时间短,无水期采出程度明显低于低速开发,含水上升速度高于低速开发,不适合高速开发。展开更多
Based on the tectonic genesis and seismic data of fault-controlled fractured-vuggy reservoirs,the typical fractured-vuggy structure features were analyzed.A 3D large-scale visual physical model of“tree-like”fracture...Based on the tectonic genesis and seismic data of fault-controlled fractured-vuggy reservoirs,the typical fractured-vuggy structure features were analyzed.A 3D large-scale visual physical model of“tree-like”fractured-vuggy structure was designed and made.The experiments of bottom-water flooding and multi-media synergistic oil displacement after bottom-water flooding were conducted with different production rates and different well-reservoir configuration relationships.The formation mechanisms and distribution rules of residual oil during bottom-water flooding under such fractured-vuggy structure were revealed.The producing characteristics of residual oil under different production methods after bottom-water flooding were discovered.The results show that the remaining oil in"tree-like"fractured-vuggy structure after bottom-water flooding mainly include the remaining oil of non-well controlled fault zones and the attic remaining oil at the top of well controlled fault zones.There exists obvious water channeling of bottom-water along the fault at high production rate,but intermittent drainage can effectively weaken the interference effect between fault zones to inhibit water channeling.Compared with the vertical well,horizontal well can reduce the difference in flow conductivity between fault zones and show better resistance to water channeling.The closer the horizontal well locates to the upper part of the“canopy”,the higher the oil recovery is at the bottom-water flooding stage.However,comprehensive consideration of the bottom-water flooding and subsequent gas injection development,the total recovery is higher when the horizontal well locates in the middle part of the“canopy”and drills through a large number of fault zones.After bottom water flooding,the effect of gas huff and puff is better than that of gas flooding,and the effect of gas huff and puff with large slug is better than that of small slug.Because such development method can effectively develop the remaining oil of non-well controlled fault展开更多
文摘基于均质油藏水驱油物理模拟实验,研究不同黏度均质油藏在不同采油速度下的水驱特征。低黏度油藏(黏度小于5 m Pa·s)水驱波及均匀,流线粗。随采油速度的提高,注水沿油层底部突进减弱,纵向波及更均匀,油层顶、底面波及系数差异减小。低黏度油藏高速开发无水期采出程度明显高于低速开发,含水上升速度低于低速开发,适宜高速开发模式。中高黏度油藏(黏度5~50 m Pa·s)水驱过程中注入水表现出明显的指进现象,水驱流线细,水驱波及不完全,流线间波及程度弱,油层顶、底面波及系数差异大。随采油速度的提高,中高黏度油藏水驱流线更细,波及更不完全,油层顶、底面波及系数明显降低。中高黏度油藏高速开发见水时间短,无水期采出程度明显低于低速开发,含水上升速度高于低速开发,不适合高速开发。
基金Supported by the National Natural Science Foundation of China(52074344)。
文摘Based on the tectonic genesis and seismic data of fault-controlled fractured-vuggy reservoirs,the typical fractured-vuggy structure features were analyzed.A 3D large-scale visual physical model of“tree-like”fractured-vuggy structure was designed and made.The experiments of bottom-water flooding and multi-media synergistic oil displacement after bottom-water flooding were conducted with different production rates and different well-reservoir configuration relationships.The formation mechanisms and distribution rules of residual oil during bottom-water flooding under such fractured-vuggy structure were revealed.The producing characteristics of residual oil under different production methods after bottom-water flooding were discovered.The results show that the remaining oil in"tree-like"fractured-vuggy structure after bottom-water flooding mainly include the remaining oil of non-well controlled fault zones and the attic remaining oil at the top of well controlled fault zones.There exists obvious water channeling of bottom-water along the fault at high production rate,but intermittent drainage can effectively weaken the interference effect between fault zones to inhibit water channeling.Compared with the vertical well,horizontal well can reduce the difference in flow conductivity between fault zones and show better resistance to water channeling.The closer the horizontal well locates to the upper part of the“canopy”,the higher the oil recovery is at the bottom-water flooding stage.However,comprehensive consideration of the bottom-water flooding and subsequent gas injection development,the total recovery is higher when the horizontal well locates in the middle part of the“canopy”and drills through a large number of fault zones.After bottom water flooding,the effect of gas huff and puff is better than that of gas flooding,and the effect of gas huff and puff with large slug is better than that of small slug.Because such development method can effectively develop the remaining oil of non-well controlled fault