The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate re...The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate reference evapotranspiration (ETo) and crop evapotranspiration (ETc) with the generated simulation data or with observed data. A database of default soil depth and water holding characteristics, effective crop rooting depths, and crop coefficient (Kc) values to convert ETo to ETc are input into the program. After calculating daily ETc, the input and derived data are used to determine effective rainfall and to generate hypothetical irrigation schedules to estimate the seasonal and annual evapotranspiration of applied water (ETaw), where ETaw is the net amount of irrigation water needed to produce a crop. in this paper, we will discuss the simulation model and how it determines ETaw for use in water resources planning.展开更多
The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily s...The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available展开更多
文摘The University of California, Davis and the California Department of Water Resources have developed a weather generator application program “SIMETAW” to simulate weather data from climatic records and to estimate reference evapotranspiration (ETo) and crop evapotranspiration (ETc) with the generated simulation data or with observed data. A database of default soil depth and water holding characteristics, effective crop rooting depths, and crop coefficient (Kc) values to convert ETo to ETc are input into the program. After calculating daily ETc, the input and derived data are used to determine effective rainfall and to generate hypothetical irrigation schedules to estimate the seasonal and annual evapotranspiration of applied water (ETaw), where ETaw is the net amount of irrigation water needed to produce a crop. in this paper, we will discuss the simulation model and how it determines ETaw for use in water resources planning.
基金supported and funded by the California Department of Water Resources(DWR)
文摘The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available