A pair of unidirectional turbines(UT)can operate in oscillatory airflow without additional units.However,this arrangement suffers from poor flow rectification.A fluidic diode(FD)offers variable hydrodynamic resistance...A pair of unidirectional turbines(UT)can operate in oscillatory airflow without additional units.However,this arrangement suffers from poor flow rectification.A fluidic diode(FD)offers variable hydrodynamic resistance based on the flow direction,and this can be coupled with UT to improve flow rectification.In this work,a numerical investigation on the effect of FD with UT is presented using the commercial fluid dynamics software ANSYS Fluent 16.1 with k-ωSST turbulence closure model.Periodic domains of UT and FD are numerically validated individually with experimental results.Later,both are coupled to obtain the combined effect,and these results are compared with the analytical approach.It was observed that coupling FD with UT improved the unit's performance at the lower flow coefficient(<1),but its performance decreased as the flow coefficient increased.Due to the diode's presence,fluid leaving the turbine experiences higher resistance at a higher flow coefficient,which decreases the overall performance of the combined unit.展开更多
A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution,inverseGaussian d...A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution,inverseGaussian distribution is suggested for underwater optical impulse response time waveform function.The expectation of this method is in good agreement with experimental data.Future works may include water absorption to the model.展开更多
For achieving high-speed requirement of underwater vehicle,a conceptual engine,which utilizes the hydroreactive characteristic of several metals under supercavitation environment,has been put forward. Especially,in or...For achieving high-speed requirement of underwater vehicle,a conceptual engine,which utilizes the hydroreactive characteristic of several metals under supercavitation environment,has been put forward. Especially,in order to obtain specific impulse as great as possible,a dual water injection system is taken into account. Then thermodynamic cycle model,which lead the improvement of power plant and energy system,is introduced in detail,and thermal efficiency is also analyzed. Furthermore,for investigating the performance of this kind of engine system,detailed thermodynamic calculation and analysis are achieved. Especially,regarding hydroreactive metal fuel Mg/AP/HTPB as our target fuel-rich propellant,considering its obvious deficient oxygen property and the energy property of magnesium/water reaction,theoretical calculation method is established by integrating chemical non-equilibrium with chemical equilibrium. Accordingly,low limit of primary water/fuel ratio is determined. In addition,the qualitative and quantitative relationship of performance parameters,such as theoretical specific impulse,nozzle exit temperature,characteristic velocity,etc.,versus water/fuel ratio is investigated respectively.展开更多
基金performed as a Grant-in-Aid for Early-Career Scientists(No.22K14434)supported by the Japan Society for the Promotion of Science(JSPS)JSPS for their financial help in conducting this studyⅡT Madras for the computational facility and financial help to present part of the work in AJWTF-2020。
文摘A pair of unidirectional turbines(UT)can operate in oscillatory airflow without additional units.However,this arrangement suffers from poor flow rectification.A fluidic diode(FD)offers variable hydrodynamic resistance based on the flow direction,and this can be coupled with UT to improve flow rectification.In this work,a numerical investigation on the effect of FD with UT is presented using the commercial fluid dynamics software ANSYS Fluent 16.1 with k-ωSST turbulence closure model.Periodic domains of UT and FD are numerically validated individually with experimental results.Later,both are coupled to obtain the combined effect,and these results are compared with the analytical approach.It was observed that coupling FD with UT improved the unit's performance at the lower flow coefficient(<1),but its performance decreased as the flow coefficient increased.Due to the diode's presence,fluid leaving the turbine experiences higher resistance at a higher flow coefficient,which decreases the overall performance of the combined unit.
文摘A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution,inverseGaussian distribution is suggested for underwater optical impulse response time waveform function.The expectation of this method is in good agreement with experimental data.Future works may include water absorption to the model.
基金Supported by National Natural Science Foundation of China (No .50776070)New Teacher Research Support Program of Xi an Jiaotong University (No .0106-08142002)
文摘For achieving high-speed requirement of underwater vehicle,a conceptual engine,which utilizes the hydroreactive characteristic of several metals under supercavitation environment,has been put forward. Especially,in order to obtain specific impulse as great as possible,a dual water injection system is taken into account. Then thermodynamic cycle model,which lead the improvement of power plant and energy system,is introduced in detail,and thermal efficiency is also analyzed. Furthermore,for investigating the performance of this kind of engine system,detailed thermodynamic calculation and analysis are achieved. Especially,regarding hydroreactive metal fuel Mg/AP/HTPB as our target fuel-rich propellant,considering its obvious deficient oxygen property and the energy property of magnesium/water reaction,theoretical calculation method is established by integrating chemical non-equilibrium with chemical equilibrium. Accordingly,low limit of primary water/fuel ratio is determined. In addition,the qualitative and quantitative relationship of performance parameters,such as theoretical specific impulse,nozzle exit temperature,characteristic velocity,etc.,versus water/fuel ratio is investigated respectively.